Question

Suppose Y1, . . . , Yn is a sample from an Exponential distribution with mean...

  1. Suppose Y1, . . . , Yn is a sample from an Exponential distribution with mean β.

  2. (a)Find the distribution of Sn =Y1 +···+Yn
    (b) Find E[Sn] and V [Sn]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),···...
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),··· ,Y(n) denote the order statistics of the sample. (a) Find the constant c so that cY(1) is an unbiased estimator of θ. (b) Find the sufficient statistic for θ and MVUE for θ.
. Let Y1, ..., Yn denote a random sample from the exponential density function given by...
. Let Y1, ..., Yn denote a random sample from the exponential density function given by f(y|θ) = (1/θ)e-y/θ when, y > 0 Find an MVUE of V (Yi)
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with density function f(y|θ) = (1/2θ)e-|y|/θ for -∞ < y < ∞ where θ > 0. The first two moments of the distribution are E(Y) = 0 and E(Y2) = 2θ2. a) Find the likelihood function of the sample. b) What is a sufficient statistic for θ? c) Find the maximum likelihood estimator of θ. d) Find the maximum likelihood estimator of the standard deviation...
Let Y1, · · · , yn be a random sample of size n from a...
Let Y1, · · · , yn be a random sample of size n from a beta distribution with parameters α = θ and β = 2. Find the sufficient statistic for θ.
Let Y1, Y2, ... Yn be a random sample of an exponential population with parameter θ....
Let Y1, Y2, ... Yn be a random sample of an exponential population with parameter θ. Find the density function of the minimum of the sample Y(1) = min⁡(Y1, Y2, ..., Yn).
Let Y1, Y2, Y3 ,..,, Yn be a random sample from a normal distribution with mean...
Let Y1, Y2, Y3 ,..,, Yn be a random sample from a normal distribution with mean µ and standard deviation 1. Then find the MVUE( Minimum - Variance Unbiased Estimation) for the parameters: µ^2 and µ(µ+1)
Please type out your answer. Let Y1, . . . , Yn be a random sample...
Please type out your answer. Let Y1, . . . , Yn be a random sample from the gamma distribution with parameters α and β, where α is known. Find the maximum likelihood estimator of β. Compute its mean and variance.
Suppose Y1, . . . , Yn ind∼ Gamma(2, β). (a) Write down the likelihood function...
Suppose Y1, . . . , Yn ind∼ Gamma(2, β). (a) Write down the likelihood function for β based on Y1, . . . , Yn. (b) Write down the log-likelihood function for β based on Y1, . . . , Yn. (c) Find an expression for the MLE of β. (d) Give the MoMs estimator of β.
SupposeY1,...,Yn is a random sample from a distribution with E(Yj) = 3,Var(Yj) = 4. (a) Compute...
SupposeY1,...,Yn is a random sample from a distribution with E(Yj) = 3,Var(Yj) = 4. (a) Compute the expected value and variance for Sn = Y1 + · · · + Yn. (b) Compute the expected value and variance for Y ̄ = 1/n (Y1 + · · · + Yn). (c) Compute the expected value of Y12 + · · · + Yn2. show the formulas you are using for each step
Let Y1, Y2, . . . , Yn denote a random sample from a uniform distribution...
Let Y1, Y2, . . . , Yn denote a random sample from a uniform distribution on the interval (0, θ). (a) (5 points)Find the MOM for θ. (b) (5 points)Find the MLE for θ.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT