Question

Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R...

  1. Using the attached regression output, answer the following:

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.972971

R Square

0.946673

Adjusted R Square

0.944355

Standard Error

76.07265

Observations

49

ANOVA

df

SS

MS

F

Significance F

Regression

2

4725757

2362878

408.3046

5.24E-30

Residual

46

266204.2

5787.049

Total

48

4991961

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-0.46627

14.97924

-0.03113

0.975302

-30.6179

29.68537

X1

0.09548

0.084947

1.123997

0.266846

-0.07551

0.26647

X2

0.896042

0.205319

4.364141

7.16E-05

0.482756

1.309328

a. What is the interpretation of Signficance F, 5.24E-30?

b. What is the interpretation of the the p-value .266846 ?

c. What is the interpretation of the p-value 7.16E-05 ?

d. For X1= 100 and x2=75, what is the forecasted value of Y?

Homework Answers

Answer #1

Que.a

The Signficance F, 5.24E-30, it is the p-value for F test, which is less than 0.05. Hence fitted regression equation is statistically significant.

Que.b

The p-value .266846 for t test for the variable X1 is greater than 0.05, hence X1 is not statistically significant. That is X1 does not contribute significantly in the model

Que.c

The p-value 7.16E-05 for t test for the variable X2 is less than 0.05, hence X2 is statistically significant. That is X2 contribute significantly in the model.

Que.d

The forecasted value of Y is,

Y = -0.46627 + 0.09548 X1 + 0.896042 X2

= -0.46627 + 0.09548 (100) + 0.896042 (75)

= 76.28488

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics...
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics Multiple R (1) R Square 0.923 Adjusted R Square (2) Standard Error 3.35 Observations ANOVA df SS MS F Significance F Regression (3) 1612 (7) (9) Residual 12 (5) (8) Total (4) (6) Coefficients Standard Error t Stat P-value Intercept 8.103 2.667 x1 7.602 2.105 (10) x2 3.111 0.613 (11)
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 12.4926 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept 38.7857 Cylinders -2.7500 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 4.0000 1.9507 6.0000 1.1763 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its...
Dep.= Mileage Indep.= Length SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Length SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 6.1135 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept 80.0094 Length -0.3047 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 175.0000 2.3108 210.0000 2.9335 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its...
Calculate the following statistics given the existing information (1 point per calculation): Regression Statistics Multiple R...
Calculate the following statistics given the existing information (1 point per calculation): Regression Statistics Multiple R R Square Adjusted R Square 0.559058 Standard Error Observations 30 ANOVA df SS MS F Significance F Regression 2 3609132796 19.38411515 6.02827E-06 Residual 27 2513568062 Total 29 6122700857 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -15800.8 57294.51554 -0.27578 0.784814722 CARAT 12266.83 1999.250369 6.135715 1.48071E-06 DEPTH 156.686 928.9461882 0.168671 0.867312915 Additionally interpret your results. Be sure to comment on Accuracy, significance...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations 60 ANOVA df SS MS F Significance F Regression 1 0.0617 0.0617 8.8622 0.0042 Residual 58 0.4038 0.0070 Total 59 0.4655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.0144 0.0110 -1.3062 0.1966 -0.0364 0.0077 X Variable 1 0.8554 0.2874 2.9769 0.0042 0.2802 1.4307 How do you interpret the above table?
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error 514.2440271 Observations 471 ANOVA df SS MS F Significance F Regression 3 9723795745 3241265248 12256.7707 0 Residual 467 123496711.4 264446.9194 Total 470 9847292456 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -267.1127974 42.01832073 -6.357055513 4.8988E-10 -349.68118 -184.54441 -349.68118 -184.54441 Fuel cost (000,000) 0.449917223 0.098292092 4.577349137 6.0451E-06 0.25676768 0.64306676 0.25676768 0.64306676 Salary (000,000) -0.327915884 0.188252958 -1.741889678 0.08218614 -0.6978436...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error 0.428710255 Observations 115 ANOVA df SS MS F Significance F Regression 4 4.878479035 1.219619759 6.635852231 8.02761E-05 Residual 110 20.21717314 0.183792483 Total 114 25.09565217 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.321875686 0.323939655 0.99362854 0.322584465 -0.320096675 0.963848047 -0.320096675 0.963848047 Gender -0.307211858 0.082630734 -3.717888514 0.000317832 -0.470966578 -0.143457137 -0.470966578 -0.143457137 Age 0.000724105 0.091134233 0.007945479 0.993674883 -0.179882553 0.181330763 -0.179882553 0.181330763...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations 21 ANOVA df SS MS F Significance F Regression 2 27.20518 13.60259 9.186487 0.00178 Residual 18 26.65291 1.480717 Total 20 53.8581 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 58.74307 12.66908 4.636728 0.000205 32.12632 85.35982 32.12632 85.35982 High School Grad -0.00133 0.000311 -4.28236 0.000448 -0.00198 -0.00068 -0.00198 -0.00068 Bachelor's -0.00016 5.46E-05 -3.00144 0.007661 -0.00028 -4.9E-05 -0.00028 -4.9E-05...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error 5272.980333 Observations 50 ANOVA df SS MS F Significance F Regression 1 75893113.09 75893113.09 2.729543781 0.105035125 Residual 48 1334607437 27804321.59 Total 49 1410500550 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept 6396.894057 3281.342486 1.949474669 0.057094351 -200.6871963 12994.47531 -2404.335972 15198.12409 HSRANK 64.68225855 39.15075519 1.6521331 0.105035125 -14.03561063 143.4001277 -40.32805468 169.6925718 a. According to your estimate, what is the predicted...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT