Question

Let we have a sample of 100 numbers from exponential distribution with parameter θ f(x, θ)...

Let we have a sample of 100 numbers from exponential distribution with parameter θ

f(x, θ) = θ e- θx      , 0 < x.

Find MLE of parameter θ. Is it unbiased estimator? Find unbiased estimator of parameter θ.

Homework Answers

Answer #1

-------------------------------------------------------------------------------------------------------------------------------

Thank You !

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),···...
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),··· ,Y(n) denote the order statistics of the sample. (a) Find the constant c so that cY(1) is an unbiased estimator of θ. (b) Find the sufficient statistic for θ and MVUE for θ.
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
Let X¯ be the sample mean of a random sample X1, . . . , Xn...
Let X¯ be the sample mean of a random sample X1, . . . , Xn from the exponential distribution, Exp(θ), with density function f(x) = (1/θ) exp{−x/θ}, x > 0. Show that X¯ is an unbiased point estimator of θ.
Let X1, ..., Xn be a sample from an exponential population with parameter λ. (a) Find...
Let X1, ..., Xn be a sample from an exponential population with parameter λ. (a) Find the maximum likelihood estimator for λ. (NOT PI FUNCTION) (b) Is the estimator unbiased? (c) Is the estimator consistent?
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ...
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ whose pdf is f(x|λ) = λ^(−1) exp(− x/λ), x > 0, λ > 0. (a) With X(1) = min{X1, . . . , Xn}, find an unbiased estimator of λ, denoted it by λ(hat). (b) Use Lehmann-Shceffee to show that ∑ Xi/n is the UMVUE of λ. (c) By the definition of completeness of ∑ Xi or other tool(s), show that E(λ(hat) |  ∑ Xi)...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with density function f(y|θ) = (1/2θ)e-|y|/θ for -∞ < y < ∞ where θ > 0. The first two moments of the distribution are E(Y) = 0 and E(Y2) = 2θ2. a) Find the likelihood function of the sample. b) What is a sufficient statistic for θ? c) Find the maximum likelihood estimator of θ. d) Find the maximum likelihood estimator of the standard deviation...