The fuel efficiency, in miles per gallon, of 12 small utility trucks was measured are recorded as follows:
......... | ......... | ......... | ......... | ...... ... | ..... .... | ......... | ......... | ..... .... | ......... | ......... | ......... |
21 | 26 | 23 | 26 | 15 | 24 | 23 | 32 | 23 | 21 | 25 | 22 |
.
For this sample, calculate the following measures:
.
Sum of All Data Values
Sum of All Deviations
Sum of All Squared Deviations Round to the nearest hundredth
Solution:
Sum of all data values = (21+26+23+26+15+24+23+32+23+21+25+22) = 281
Mean values = (281/12) = 23.42
Sum of deviations = (21-23.42)+(26-23.42)+(23-23.42)+(26-23.42)+(15-23.42)+(24-23.42)+(23-23.42)+(32-23.42)+(23-23.42)+(21-23.42)+(25-23.42)+(22-23.42) = -2.42 + 2.58 -0.42 +2.58 - 8.42 +0.58 -0.42 +8.58-0.42-2.42+1.58-1.42 = -0.04
Sum of all squared deviation = (-2.42)^2+(2.58)^2+(-0.42)^2+(2.58)^2+(-8.42)^2+(0.58)^2+(-0.42)^2+(8.58)^2+(-0.42)^2+(-2.42)^2+(1.58)^2+(-1.42)^2 = 174.92
Get Answers For Free
Most questions answered within 1 hours.