Question

Let F(x) = 1 − e −2x for x > 0 and F(x) = 0 for...

Let F(x) = 1 − e −2x for x > 0 and F(x) = 0 for x ≤ 0. Is F(x) a distribution function? Explain your answer. If it is a distribution function, find its density function.

Homework Answers

Answer #1

so, PDF ,f(x)=2*e^-2x for x>0 and 0 for x<0

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
Let X have the distribution that has the following probability density function: f(x)={2x,0<x<1        {0, Otherwise...
Let X have the distribution that has the following probability density function: f(x)={2x,0<x<1        {0, Otherwise Find the probability that X>0.5. Why is the probability 0.75 and not 0.5?
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0...
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0 < x < 2; 0, otherwise. a) What is the value of c? b) What is the cumulative distribution function of X? c) Find P(X<1|(1/2)<X<(3/2)).
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent...
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent random variable following an identical distribution f(x):=e^(-x) if x>0, calculate the moment generating function of 2X+3Y b) If X follows a bernoulli(0.5), and Y follows a Binomial(3,0.5), and if X and Y are independent, calculate the probability P(X+Y=3) and P(X=0|X+Y=3)
let the density function of x be f(x) = e^−x, x>0, find of the density function...
let the density function of x be f(x) = e^−x, x>0, find of the density function of Z = e^-x
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5...
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5 0 1 < x < infinity elsewhere 2. The probability density function of X is f(x). F(1.5)=___________ f(x) = {(1/2)x^3 - (3/8)x^2 0 0 < x < 2 elsewhere   3. F(x) is the distribution function of X. Find the probability density function of X. Give your answer as a piecewise function. F(x) = {3x^2 - 2x^3 0 0<x<1 elsewhere
Let f(x, y) = c/x, 0 < y < x < 1 be the joint density...
Let f(x, y) = c/x, 0 < y < x < 1 be the joint density function of X and Y . a) What is the value of c? a) 1   b) 2 c) 1/2 d) 2/3 e) 3/2 b)what is the marginal probability density function of X? a) x/2 b)1 c)1/x d)x e)2x c)what is the marginal probability density function of Y ? a) ln y   b)−ln y c)1 d)y e)y2 d)what is E[X]? a)1 b)2 c)4 d)1/2 e)1/4
How to find the mean of the probability density: f(x) = e^-2x for -.441<x<.440, and 0...
How to find the mean of the probability density: f(x) = e^-2x for -.441<x<.440, and 0 elsewhere.
find μ and σ2 for the probability density. For distribution function F(X): F(x)=x^2/2 when 0<x<1 F(x)=2x-x^2/2-1...
find μ and σ2 for the probability density. For distribution function F(X): F(x)=x^2/2 when 0<x<1 F(x)=2x-x^2/2-1 when 1<=x<2 F(x)=1 when x>=2 1.P(X>1.8) = 0.02 2.P(0.4<=X<=1.6) = 0.84
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT