Question

A manufacturer of banana chips would like to know whether its bag filling machine works correctly...

A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 448 gram setting. It is believed that the machine is underfilling the bags. A 51 bag sample had a mean of 443 grams with a variance of 225. Assume the population is normally distributed. A level of significance of 0.02 will be used. Specify the type of hypothesis test.

Homework Answers

Answer #1

H0: = 448

Ha: < 448

Test statistics

t = ( - ) / Sqrt ( S2 / n)

= ( 443 - 448) / sqrt ( 225 / 51)

= -2.38

df = n - 1 = 51 - 1 = 50

From T table,

Critical value at 0.02 significance level with 50 df = -2.108

Since test statistics < -2.108 , Reject H0.

We conclude at 0.02 level that we have sufficient evidence to conclude that the machine is underfilling the bags.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A manufacturer of banana chips would like to know whether its bag filling machine works correctly...
A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 434 gram setting. It is believed that the machine is underfilling or overfilling the bags. A 24 bag sample had a mean of 425 grams with a standard deviation of 16. Assume the population is normally distributed. A level of significance of 0.02 will be used. Specify the type of hypothesis test.
A manufacturer of banana chips would like to know whether its bag filling machine works correctly...
A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 435 gram setting. It is believed that the machine is underfilling the bags. A 51 bag sample had a mean of 428 grams with a standard deviation of 25. Assume the population is normally distributed. A level of significance of 0.05 will be used. Specify the type of hypothesis test. Left-Tailed Test Right-Tailed Test Two-Tailed Test
A manufacturer of banana chips would like to know whether its bag filling machine works correctly...
A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 409.0 gram setting. It is believed that the machine is underfilling the bags. A 44 bag sample had a mean of 399.0 grams. A level of significance of 0.02 will be used. Determine the decision rule. Assume the variance is known to be 784.00 . Enter the decision rule.
A manufacturer of banana chips would like to know whether its bag filling machine works correctly...
A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 436.0 gram setting. It is believed that the machine is underfilling the bags. A 40 bag sample had a mean of 430.0 grams. A level of significance of 0.02 will be used. Is there sufficient evidence to support the claim that the bags are underfilled? Assume the standard deviation is known to be 23.023.0.
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly...
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 443 gram setting. It is believed that the machine is underfilling the bags. A 16 bag sample had a mean of 435 grams with a standard deviation of 25. Assume the population is normally distributed. A level of significance of 0.05 will be used. Specify the type of hypothesis test.
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly...
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 416 gram setting. It is believed that the machine is underfilling the bags. A 15 bag sample had a mean of 413 grams with a variance of 729. Assume the population is normally distributed. A level of significance of 0.05 will be used. Specify the type of hypothesis test.
A manufacturer of banana chips would like to know whether its bag filling machine works correctly...
A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 419 gram setting. It is believed that the machine is underfilling the bags. A 19 bag sample had a mean of 412 grams with a variance of 784. A level of significance of 0.025 will be used. Assume the population distribution is approximately normal. Make the decision to reject or fail to reject the null hypothesis.
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 414 gram setting. It is believed that the machine is underfilling the bags. A 11 bag sample had a mean of 421 grams with a standard deviation of 28. assume the population is normally distributed. a level of signifigance of 0.02 will be used. specify the type of hypothesis test. left tailed right tailed two tailed
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly...
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 411 gram setting. It is believed that the machine is underfilling the bags. A 26 bag sample had a mean of 406 grams with a variance of 225. Assume the population is normally distributed. A level of significance of 0.02 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or...
A manufacturer of banana chips would like to know whether its bag filling machine works correctly...
A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 415415 gram setting. Based on a 2424 bag sample where the mean is 409409 grams and the variance is 784784, is there sufficient evidence at the 0.10.1 level that the bags are underfilled? Assume the population distribution is approximately normal. Step 1 of 5: State the null and alternative hypotheses. A manufacturer of banana chips would like to know whether its bag...