Question

Consider the following hypothesis test. H0: 1 - 2 ≤ 0 Ha: 1 - 2 >...

Consider the following hypothesis test. H0: 1 - 2 ≤ 0 Ha: 1 - 2 > 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 25.2 x2 = 22.8 σ1 = 5.2 σ2 = 6.0 a. What is the value of the test statistic (round to 2 decimals)? b. What is the p-value (round to 4 decimals)? Use z-table. c. With = .05, what is your hypothesis testing conclusion?

Homework Answers

Answer #1

we have to test that

we have for sample 1

sample size =n1=40 sample mean =m1=25.2 SD1=5.2

for sample 2

sample size =n2=50 sample mean =m2=22.8 SD2=6

a) test statistics is given by

b)

since test is right tailed so

P-Value =P(Z>2.03) =0.0212

c)

since P Value is less than level of significance hence we reject the null hypothesis that is there is enough evidence to conclude that population mean difference is more than ZERO

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following hypothesis test.                         H0: μ1 - μ2 ≤ 0          &nbs
Consider the following hypothesis test.                         H0: μ1 - μ2 ≤ 0                         Ha: μ1 - μ2 > 0                         n1 = 40,              1 = 25.2,                  σ1    = 5.2                                            n2 = 50,              2 = 22.8,                  σ2   = 6.0             a. What is the value of the test statistic?             b. What is the p-value?             c. With α = 0.05, what is your hypothesis-testing conclusion?
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 >...
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 > 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 25.7 x2 = 22.8 σ1 = 5.7 σ2 = 6 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 80 n2 = 70 x1 = 104 x2 = 106 σ1 = 8.4 σ2 = 7.5 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.9 s2 = 8.5 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
Consider the following hypothesis test. H0:  1 -  2≤ 0 Ha:  1 -  2> 0 The following results are for...
Consider the following hypothesis test. H0:  1 -  2≤ 0 Ha:  1 -  2> 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n 1 = 30 n 2 = 70 x 1 = 25.6 x 2 = 22.2 σ 1 = 5.3 σ 2 = 7 a. What is the value of the test statistic (round to 2 decimals)? b. What is the p-value (round to 4 decimals)? Use z-table. Use z-value rounded to...
Question 1 Consider the following hypothesis test. H0:  1 -  2= 0 Ha:  1 -  2≠ 0 The following results...
Question 1 Consider the following hypothesis test. H0:  1 -  2= 0 Ha:  1 -  2≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n 1 = 35 n 2 = 40 x 1 = 13.6 x 2 = 10.1 s 1 = 5.5 s 2 = 8.2 a. What is the value of the test statistic (to 2 decimals)? b. What is the degrees of freedom for the t distribution? (Round down your answer to...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.7 s2 = 8.2 (a) What is the value of the test statistic? (Use x1 − x2.  Round your answer to three decimal places.) (b) What is the degrees of...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.8 s2 = 8.6 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
You may need to use the appropriate appendix table or technology to answer this question. Consider...
You may need to use the appropriate appendix table or technology to answer this question. Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 70 n2 = 60 x1 = 102 x2 = 104 σ1 = 8.6 σ2 = 7.9 (a) What is the value of the test statistic? (b) What is the...
Given the information below that includes the sample size (n1 and n2) for each sample, the...
Given the information below that includes the sample size (n1 and n2) for each sample, the mean for each sample (x1 and x2) and the estimated population standard deviations for each case( σ1 and σ2), enter the p-value to test the following hypothesis at the 1% significance level : Ho : µ1 = µ2 Ha : µ1 > µ2   Sample 1 Sample 2 n1 = 10 n2 = 15 x1 = 115 x2 = 113 σ1 = 4.9 σ2 =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT