Question

1. Suppose set S has a cardinal number of 9. a. How many subsets can be...

1. Suppose set S has a cardinal number of 9.

a. How many subsets can be formed from the set?

b. How many subsets containing 5 elements can be formed from the set?

Homework Answers

Answer #1

Given that the cardinality of set S = 9

a) Number of subsets from this set = 29 = 512

General result:

If n is the number of elements in the set then

No. of subsets possible for this subset is 2n

Example. {1,2} n=2

Number of subsets = 22 =4 and those subsets are ϕ, {1}, {2},{1,2}

every set is a subset of itself i.e. {1,2}

and ϕ is a subset of every set

b) Cardinality of set is 9

So, the number of subsets containing 5 elements is 9 choose 5 =  9! / ( 5! * 4!) = 126

where n choose k is given by

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the set S has n elements and discuss the number of subsets of various...
Suppose that the set S has n elements and discuss the number of subsets of various sizes. (a) How many subsets of size 0 does S have? (b) How many subsets of size 1 does S have? (c) How many subsets of size 2 does S have? (d) How many subsets of size n does S have? (e) Clearly the total number of subsets of S must equal the sum of the number of subsets of size 0, of size...
From a set of n elements, how many subsets with at least 5 element can be...
From a set of n elements, how many subsets with at least 5 element can be formed?
1)Let the Universal Set, S, have 97 elements. A and B are subsets of S. Set...
1)Let the Universal Set, S, have 97 elements. A and B are subsets of S. Set A contains 45 elements and Set B contains 18 elements. If Sets A and B have 1 elements in common, how many elements are in A but not in B? 2)Let the Universal Set, S, have 178 elements. A and B are subsets of S. Set A contains 72 elements and Set B contains 95 elements. If Sets A and B have 39 elements...
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
A)Let the Universal Set, S, have 118 elements. A and B are subsets of S. Set...
A)Let the Universal Set, S, have 118 elements. A and B are subsets of S. Set A contains 18 elements and Set B contains 94 elements. If the total number of elements in either A or B is 95, how many elements are in B but not in A? B)A company estimates that 0.3% of their products will fail after the original warranty period but within 2 years of the purchase, with a replacement cost of $350. If they offer...
Let A be the set of all natural numbers less than 100. How many subsets with...
Let A be the set of all natural numbers less than 100. How many subsets with three elements does set A have such that the sum of the elements in the subset must be divisible by 3?
Let S be the universal set, where: S = { 1 , 2 , 3 ,...
Let S be the universal set, where: S = { 1 , 2 , 3 , ... , 18 , 19 , 20 } Let sets A and B be subsets of S, where: Set A = { 2 , 5 , 6 , 10 , 16 , 17 } Set B = { 5 , 6 , 9 , 11 , 15 , 16 , 17 , 18 , 20 } C = { 2 , 3 , 4...
Let SS be the universal set, where: S={1,2,3,...,28,29,30}S={1,2,3,...,28,29,30} Let sets AA and BB be subsets of...
Let SS be the universal set, where: S={1,2,3,...,28,29,30}S={1,2,3,...,28,29,30} Let sets AA and BB be subsets of SS, where: Set A={1,8,13,14,16,17,20,25,27,28}A={1,8,13,14,16,17,20,25,27,28} Set B={6,7,9,13,14,30}B={6,7,9,13,14,30} Set C={5,8,10,11,13,14,15,17,23,25,28}C={5,8,10,11,13,14,15,17,23,25,28} Find the number of elements in the set (A∩B)(A∩B) n(A∩B)n(A∩B) = Find the number of elements in the set (B∩C)(B∩C) n(B∩C)n(B∩C) = Find the number of elements in the set (A∩C)(A∩C) n(A∩C)n(A∩C) =
9. We seek to count the number of ways there are to select subsets (including the...
9. We seek to count the number of ways there are to select subsets (including the emp- ty set) from the set [1,2,3,....,n] in which no consecutive numbers occur. Suppose the number of ways is hn. Find a recurrence relation for hn.
1. Let D={0,1,2,3,4,5,6,7,8,9} be the set of digits. Let P(D) be the power set of D,...
1. Let D={0,1,2,3,4,5,6,7,8,9} be the set of digits. Let P(D) be the power set of D, i.e. the set of all subsets of D.    a) How many elements are there in P(D)? Prove it!    b) Which number is greater: the number of different subsets of D which contain the digit 7 or the number of different subsets of D which do not contain the digit 7? Explain why!    c) Which number is greater: the number of different...