Question

Chapter 8, Problem 38 Incorrect. Samples of size n=6 are collected from a process every hour....

Chapter 8, Problem 38

Incorrect.

Samples of size n=6 are collected from a process every hour. After 20 samples have been collected, we construct the control chart with σ=1.40, UCL = 21 and LCL=18. Suppose that the mean shifts to 18.5. (a) What is the probability that this shift will be detected on the next sample? Round your answer to four decimal places (e.g. 98.7654). (b) What is the ARL after the shift? Round your answer to three decimal places (e.g. 98.765).

(a)
(b)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Random samples of size n = 410 are taken from a population with p = 0.09....
Random samples of size n = 410 are taken from a population with p = 0.09. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart. (Round the value for the centerline to 2 decimal places and the values for the UCL and LCL to 3 decimal places.) Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart if samples of 290 are used....
Samples of n =5 units are taken from a process every hour. The x̄ and R̄...
Samples of n =5 units are taken from a process every hour. The x̄ and R̄ values for a particular quality characteristic are determined. After 25 samples have been collected, we calculate x̄ = 20 and R̄ = 4.56. (a) What are the three- sigma control limit for x̄ and R? (b) Both charts exhibit control. Estimate the process standard deviation. (c) Assume that the process output is normally distributed. If the specifications are 19 ± 5, what are your...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating satisfactorily. In the 25 samples, a total of 185 items were found to be defective. (a) What is an estimate of the proportion defective when the process is in control? (b) What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.) (c) Compute the upper and lower...
PS: Kindly solve with in MS WORD Eight samples (m=8) of size (n = 5) have...
PS: Kindly solve with in MS WORD Eight samples (m=8) of size (n = 5) have been collected from a manufacturing process that is in statistical control, and the dimension of interest has been measured for each part. It is desired to determine the values of the center, LCL, and UCL for ̅ and R charts. The calculated ̅ values (units are in mm) are 2.004, 1.993, 2.008, 1.929, 1.999, 2.001, 1.995 and 2.002. The calculated R values (mm) are...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating satisfactorily. In the 25 samples, a total of 180 items were found to be defective. (a)What is an estimate of the proportion defective when the process is in control? _________________. (b)What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.) ________________. (c)Compute the upper and lower control...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 0 2 15 0 3 15 0 4 15 2 5 15 0 6 15 3 7 15 1 8 15 0 9 15 3 10 15 1 a. Determine the p−p−, Sp, UCL and LCL...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 0 2 15 2 3 15 0 4 15 3 5 15 1 6 15 3 7 15 1 8 15 0 9 15 0 10 15 0 a. Determine the p−p−, Sp, UCL and LCL...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at Emmanual​ Kodzi's factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. Refer to Table S6.1 - Factors for computing control chart limits (3 sigma) for this problem. Sample ​Size, n Mean​ Factor, A2 Upper​ Range, D4 Lower​ Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0...
Temperature is used to measure the output of a production process. When the process is in...
Temperature is used to measure the output of a production process. When the process is in control, the mean of the process is μ = 128.5 and the standard deviation is σ = 0.3. (a) Compute the upper and lower control limits if samples of size 6 are to be used. (Round your answers to two decimal places.) UCL = LCL = Construct the x chart for this process. A graph shows three horizontal lines. The horizontal axis is labeled...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 1 2 15 1 3 15 3 4 15 1 5 15 0 6 15 0 7 15 2 8 15 1 9 15 2 10 15 1 a. Determine the p−p− , Sp, UCL and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT