Determine the area under the standard normal curve that lies between left parenthesis a right parenthesis Upper Z equals negative 0.43 and Upper Z equals 0.43, (b) Upper Z equals negative 2.34 and Upper Z equals 0, and (c) Upper Z equals negative 1.35 and Upper Z equals negative 0.88. LOADING... Click the icon to view a table of areas under the normal curve.
a)
P( -0.43≤ X ≤ 0.43 ) = 0.332804.
P( X ≤ -0.43 ) = 0.333598.
P( X > 0.43 ) = 0.333598.
R code should be:
pnorm(q=0.43, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE) -
pnorm(q=-0.43, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE)
dnorm (x=-0.43, mean=0, sd=1)
b)
z1 = -2.34, z2 = 0.
P( -2.34≤ X ≤ 0 ) = 0.490358.
P( X ≤ -2.34 ) = 0.00964187.
P( X > 0 ) = 0.5.
R code should be:
pnorm(q=0, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE) -
pnorm(q=-2.34, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE)
dnorm (x=-2.34, mean=0, sd=1)
c)
z1 = -1.35, z2 = -0.88.
P( -1.35≤ X ≤ -0.88 ) = 0.100922.
P( X ≤ -1.35 ) = 0.088508.
P( X > -0.88 ) = 0.81057.
R code should be:
pnorm(q=-0.88, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE)
-
pnorm(q=-1.35, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE)
dnorm (x=-1.35, mean=0, sd=1)
please like ??
Get Answers For Free
Most questions answered within 1 hours.