Question

Problem 1: Relations among Useful Discrete Probability Distributions. A Bernoulli experiment consists of only one trial...

Problem 1: Relations among Useful Discrete Probability Distributions. A Bernoulli experiment consists of only one trial with two outcomes (success/failure) with probability of success p. The Bernoulli distribution

is

P (X = k) = pkq1-k, k=0,1

The sum of n independent Bernoulli trials forms a binomial experiment with parameters n and p. The binomial probability distribution provides a simple, easy-to-compute approximation with reasonable accuracy to hypergeometric distribution with parameters N, M and n when n/N is less than or equal to 0.10. In this case, we can approximate the hypergeometric probabilities by a binomial distribution with parameters n and p = M/N. Further, the Poisson distribution with mean μ = np gives an accurate approximation to binomial probabilities when n is large and p is small.

This is my third time posting this question the first two times the same person answered it I would like a different person to answer this time so if you have already answered this question please do not answer it again.

1. Suppose in a region in Saskatchewan, among a group of 20 adults with cancer, seven were physically abused during their childhood. A random sample of five adult persons is taken from this group. Assume that sampling occurs without replacement, and the random variable X represents the number of adults in the sample who were abused during their childhood period.

(a) Write the formula for p(x), the probability distribution of X. How this distribution is called?

(b) Using the adequate formulas, find the mean and variance of X?

(c) Find the probabilities of all the possible values of X. Plot the histogram of X and try the locate the approximative value of the mean μ.

(d) What is the probability that at least one person was abused during childhood?

Now suppose another survey in British Columbia reveals that among 180 adults with cancer, only 80 adults were abused in their childhood. Suppose again that a random sample of five adult persons is taken from this group without replacement and let denote by Y the random variable which represents the number of adults abused during their childhood period in the sample.

(e) Find the probabilities of all the possible values of Y and plot the histogram of Y. How do you compare this histogram with the histogram of X.

(f) Find the probabilities of all the possible values of Y using the formula for the binomial distribution with p = 80/180

as an approximation. Plot the histogram and compare it with the histogram obtained using the hypergeometric formula.

(g) Is the precedent approximation close enough? Why or why not?

(h) Calculate the mean and variance using both binomial and hypergeometric distributions, respectively. Provide a comparison and summarize your findings

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(1) Consider X that follows the Bernoulli distribution with success probability 1/4, that is, P(X =...
(1) Consider X that follows the Bernoulli distribution with success probability 1/4, that is, P(X = 1) = 1/4 and P(X = 0) = 3/4. Find the probability mass function of Y , when Y = X4 . Find the second moment of Y . (2) If X ∼ binomial(10, 1/2), then use the binomial probability table (Table A.1 in the textbook) to find out the following probabilities: P(X = 5), P(2.9 ≤ X ≤ 4.9) (3) A deck of...
1.) A binomial experiment consists of 19 trials. The probability of success on trial 12 is...
1.) A binomial experiment consists of 19 trials. The probability of success on trial 12 is 0.54. What is the probability of success on trial 16? 0.54 0.15 0.39 0.88 0.5 0.11 2. Assume that 12 jurors are randomly selected from a population in which 86% of the people are Asian-Americans. Refer to the probability distribution table below and find the indicated probabilities. xx P(x)P(x) 0 0+ 1 0+ 2 0+ 3 0+ 4 0+ 5 0.0004 6 0.0028 7...
1. Given a discrete random variable, X , where the discrete probability distribution for X is...
1. Given a discrete random variable, X , where the discrete probability distribution for X is given on right, calculate E(X) X P(X) 0 0.1 1 0.1 2 0.1 3 0.4 4 0.1 5 0.2 2. Given a discrete random variable, X , where the discrete probability distribution for X is given on right, calculate the variance of X X P(X) 0 0.1 1 0.1 2 0.1 3 0.4 4 0.1 5 0.2 3. Given a discrete random variable, X...
A biased coin (one that is not evenly balanced) is tossed 6 times. The probability of...
A biased coin (one that is not evenly balanced) is tossed 6 times. The probability of Heads on any toss is 0.3. Let X denote the number of Heads that come up. 1. Does this experiment meet the requirements to be considered a Bernoulli Trial? Explain why or why not. 2. If we call Heads a success, what would be the parameters of the binomial distribution of X? (Translation: find the values of n and p) 3. What is the...
Provide an example of a probability distribution of discrete random variable, Y, that takes any 4...
Provide an example of a probability distribution of discrete random variable, Y, that takes any 4 different integer values between 1 and 20 inclusive; and present the values of Y and their corresponding (non-zero) probabilities in a probability distribution table. Calculate: a) E(Y) b) E(Y2 ) and c) var(Y). d) Give examples of values of ? and ? , both non-zero, for a binomial random variable X. Use either the binomial probability formula or the binomial probability cumulative distribution tables...
For each of the random quantities X,Y, and Z, defined below (a) Plot the probability mass...
For each of the random quantities X,Y, and Z, defined below (a) Plot the probability mass function PMS (in the discrete case) , or the probability density function PDF (in the continuous case) (b) Calculate and plot the cumulative distribution function CDF (c) Calculate the mean and variance, and the moment function m(n), and plot the latter. The random quantities are as follows: X is a discrete r.q. taking values k=0,1,2,3,... with probabilities p(1-p)^k, where p is a parameter with...
True or False: 10. The probability of an event is a value which must be greater...
True or False: 10. The probability of an event is a value which must be greater than 0 and less than 1. 11. If events A and B are mutually exclusive, then P(A|B) is always equal to zero. 12. Mutually exclusive events cannot be independent. 13. A classical probability measure is a probability assessment that is based on relative frequency. 14. The probability of an event is the product of the probabilities of the sample space outcomes that correspond to...
1. Compute the mean and variance of the following probability distribution. (Round your answers to 2...
1. Compute the mean and variance of the following probability distribution. (Round your answers to 2 decimal places.) x P(x) 4 0.10 7 0.25 10 0.30 13 0.35 2. Given a binomial distribution with n = 6 and π⁢= .25. Determine the probabilities of the following events using the binomial formula. (Round your answers to 4 decimal places.) x = 2 x = 3 3. A probability distribution is a listing of all the outcomes of an experiment and the...
Question 1 of 3 Which of the following is true about the random variables X, Y,...
Question 1 of 3 Which of the following is true about the random variables X, Y, and Z? X is binomial with n = 20 and p = .22. Y is binomial with n = 40 and p = .32. Z is not binomial. All of the above are true. Only (A) and (B) are true. Question 2 of 3 What is the probability that exactly 2 of the 20 older adults prefer organic? (Note: Some answers are rounded.) .105...
Question 1 Refer to the probability function given in the following table for a random variable...
Question 1 Refer to the probability function given in the following table for a random variable X that takes on the values 1,2,3 and 4 X 1 2 3 4 P(X=x) 0.4 0.3 0.2 0.1 a) Verify that the above table meet the conditions for being a discrete probability distribution b) Find P(X<2) c) Find P(X=1 and X=2) d) Graph P(X=x) e) Calculate the mean of the random variable X f) Calculate the standard deviation of the random variable X...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT