Question

Find the item that matches the description below. The random variable X denotes a normally distributed...

Find the item that matches the description below. The random variable X denotes a normally distributed random​ variable, X~N(μ, σ2). The random variable Z denotes a standard normal random​ variable, Z~N(0, 1).

Variance of X

Homework Answers

Answer #1

Here, We have given two distributions

1) X~N(μ, σ2)

2) Z~N(0, 1)

From this description, X clearly follows a Normal distribution with mean μ and variance  σ2.

Therefore, the variance of X is σ2,

Var(X) = σ2.

From this description, Z clearly follows a standard Normal distribution with mean 0 and variance 1.

Therefore, the variance of Z is 1.

Var(Z) = 1

Dear Student,

I am waiting for your feedback. I have given my 100% to solve your queries.If you are satisfied with my given answer. Can you please please like it.

Thank You!!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X is a normally distributed random variable with mean μ = 10 and variance σ2...
Suppose X is a normally distributed random variable with mean μ = 10 and variance σ2 = 4. Find P(9 < X < 12).
The random variable Z denotes a standard normal random​ variable, Upper Z tilde Upper N left...
The random variable Z denotes a standard normal random​ variable, Upper Z tilde Upper N left parenthesis 0 comma 1 right parenthesis. What is the standard deviation of​ Z?
A random variable X is normally distributed with a mean of 81 and a variance of...
A random variable X is normally distributed with a mean of 81 and a variance of 81 and a random variable Y is normally distributed with a mean of 160 and a variance of 256 The random variables have a correlation coefficient equal to negative 0.5 Find the mean and variance of the random variable below. Wequals=55Xminus−88Y
Suppose x is a normally distributed random variable with μ=30 and σ=5. Find a value x...
Suppose x is a normally distributed random variable with μ=30 and σ=5. Find a value x 0of the random variable x. (Round to two decimal places as needed.) p(x >x 0): 0.95
1. Let fX(x;μ,σ2) denote the probability density function of a normally distributed variable X with mean...
1. Let fX(x;μ,σ2) denote the probability density function of a normally distributed variable X with mean μ and variance σ2. a. What value of x maximizes this function? b. What is the maximum value of fX(x;μ,σ2)?
A random variable X is normally distributed with a mean of 121 and a variance of...
A random variable X is normally distributed with a mean of 121 and a variance of 121, and a random variable Y is normally distributed with a mean of 150 and a variance of 225. the random variables have a correlation coefficient equal to 0.6. Find the mean and variance of the random variable : W= 6X + 3Y
Let the random variable X follow a Normal distribution with variance σ2 = 625. A random...
Let the random variable X follow a Normal distribution with variance σ2 = 625. A random sample of n = 50 is obtained with a sample mean, X-Bar of 180. What is the probability that μ is between 198 and 211? What is Z-Score1 for μ greater than 198?
The random variable X is normally distributed. Also, it is known that P(X > 161) =...
The random variable X is normally distributed. Also, it is known that P(X > 161) = 0.04. [You may find it useful to reference the z table.] a. Find the population mean μ if the population standard deviation σ = 13. (Round "z" value to 3 decimal places and final answer to 2 decimal places.) b. Find the population mean μ if the population standard deviation σ = 24. (Round "z" value to 3 decimal places and final answer to...
Assume the random variable X is normally distributed with a mean μ = 50 and standard...
Assume the random variable X is normally distributed with a mean μ = 50 and standard deviation σ = 4.5. Find the P (x > 60) (three-decimal accuracy) Find the P (35 < x < 55) (three-decimal accuracy) Find x so that the area below x is .12. (one-decimal accuracy)
A random variable X is normally distributed with a mean of 100 and a variance of...
A random variable X is normally distributed with a mean of 100 and a variance of 100​, and a random variable Y is normally distributed with a mean of 180 and a variance of 324. The random variables have a correlation coefficient equal to −0.4. Find the mean and variance of the random variable below.W=2X−4Y μW= ​(Type an integer or a​ decimal.) σ2W= ​(Type an integer or a​ decimal.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT