Question

Parishioners arrive at church on Sunday morning according to a Poisson process at rate 2/minute starting...

Parishioners arrive at church on Sunday morning according to a Poisson process at rate 2/minute starting at 9:00am until 11:00am. Each parishioner wears a hat with probability 1/3, independent of other parishioners, and brings an umbrella with probability 1/4, independent of whether she wears a hat and independent of other parishioners. The cloakroom has umbrella stands and basketsfor hats.

(a) What is the probability that the cloakroom has exactly 99 hats at 11:00am?

(b) How much space for hats must the cloakroom have to be approximately 98% sure that it won’t run out of space? (Use the central limit theorem).

(e) What is the expected amount of time that elapses starting at 9:00am until there are at least 3 items in the cloakroom?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Starting at noon, diners arrive at a restaurant according to a Poisson process at the rate...
Starting at noon, diners arrive at a restaurant according to a Poisson process at the rate of five customers per minute. The time each customer spends eating at the restaurant has an exponential distribution with mean 40 minutes, independent of other customers and independent of arrival times. Find the distribution, as well as the mean and variance, of the number of diners in the restaurant at 2 p.m.
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1...
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1 . Similarly, starting at time 0, a blue bulb flashes according to a Poisson process with rate ?=2 , but only until a nonnegative random time ? , at which point the blue bulb “dies." We assume that the two Poisson processes and the random variable ? are (mutually) independent. Suppose that ? is equal to either 1 or 2, with equal probability. Write...
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1....
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1. Similarly, starting at time 0, a blue bulb flashes according to a Poisson process with rate ?=2, but only until a nonnegative random time ?, at which point the blue bulb “dies." We assume that the two Poisson processes and the random variable ? are (mutually) independent. Suppose that ? is equal to either 1 or 2, with equal probability. Write down an expression...
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1....
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1. Similarly, starting at time 0, a blue bulb flashes according to a Poisson process with rate ?=2, but only until a nonnegative random time ?, at which point the blue bulb “dies." We assume that the two Poisson processes and the random variable ? are (mutually) independent. Suppose that X is equal to either 1 or 2, with equal probability. Write down an expression...
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1...
Starting at time 0, a red bulb flashes according to a Poisson process with rate ?=1 . Similarly, starting at time 0, a blue bulb flashes according to a Poisson process with rate ?=2 , but only until a nonnegative random time ? , at which point the blue bulb “dies." We assume that the two Poisson processes and the random variable ? are (mutually) independent. Suppose that ? is equal to either 1 or 2, with equal probability. Write...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT