Question

A study is made of residents in Phoenix and its suburbs concerning the proportion of residents...

A study is made of residents in Phoenix and its suburbs concerning the proportion of residents who subscribe to Sporting News. A random sample of 88 urban residents showed that 13 subscribed, and a random sample of 96 suburban residents showed that 20 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to Sporting News? Use a 1% level of significance. What are we testing in this problem? paired difference single proportion difference of proportions difference of means single mean (a) What is the level of significance? .01 State the null and alternate hypotheses. H0: p1 = p2; H1: p1 > p2 H0: p1 = p2; H1: p1 < p2 H0: p1 < p2; H1: p1 = p2 H0: p1 = p2; H1: p1 ? p2 (b) What sampling distribution will you use? What assumptions are you making? The Student's t. We assume the population distributions are approximately normal. The standard normal. The number of trials is sufficiently large. The standard normal. We assume the population distributions are approximately normal. The Student's t. The number of trials is sufficiently large. What is the value of the sample test statistic? (Test the difference p1 ? p2. Do not use rounded values. Round your final answer to two decimal places.) (c) Find (or estimate) the P-value. (Round your answer to four decimal places.) Sketch the sampling distribution and show the area corresponding to the P-value. Maple Generated Plot Maple Generated Plot Maple Generated Plot Maple Generated Plot (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level ?? At the ? = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant. At the ? = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (e) Interpret your conclusion in the context of the application. There is sufficient evidence at the 0.01 level to conclude that the proportion of suburban residents subscribing to Sporting News is higher. There is insufficient evidence at the 0.01 level to conclude that the proportion of suburban residents subscribing to Sporting News is higher.

Homework Answers

Answer #1

The statistical software output for this problem is:

Two sample proportion summary hypothesis test:
p1 : proportion of successes for population 1
p2 : proportion of successes for population 2
p1 - p2 : Difference in proportions
H0 : p1 - p2 = 0
HA : p1 - p2 < 0

Hypothesis test results:

Difference Count1 Total1 Count2 Total2 Sample Diff. Std. Err. Z-Stat P-value
p1 - p2 13 88 20 96 -0.060606061 0.056618659 -1.0704256 0.1422

Hence,

Hypotheses:H0: p1 = p2; H1: p1 < p2

The standard normal. We assume the population distributions are approximately normal.

Test statistic = -1.07

p - Value = 0.1422

At the ? = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.

There is insufficient evidence at the 0.01 level to conclude that the proportion of suburban residents subscribing to Sporting News is higher.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents...
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents who subscribe to Sporting News. A random sample of n1 = 90 urban residents showed that r1 = 10 subscribed, and a random sample of n2 = 99 suburban residents showed that r2 = 18 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to Sporting News? Use a 5% level of significance. What are we testing in this problem? single...
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents...
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents who subscribe to Sporting News. A random sample of n1 = 86 urban residents showed that r1 = 14 subscribed, and a random sample of n2 = 97 suburban residents showed that r2 = 20 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to Sporting News? Use a 5% level of significance. What is the value of the sample test...
A study is made of residents in portland and its suburbs concerning the proportion of residents...
A study is made of residents in portland and its suburbs concerning the proportion of residents who subscribe to HBO. A random sample of 88 urban residents showed that 12 subscribed, and a random sample of 97 suburban residents showed that 18 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to HBO? Use a 5% level of significance. a. State the null and alternative hypotheses ?0: ?1: b. What calculator test will you use? List the...
A random sample of n1 = 150 people ages 16 to 19 were taken from the...
A random sample of n1 = 150 people ages 16 to 19 were taken from the island of Oahu, Hawaii, and 14 were found to be high school dropouts. Another random sample of n2 = 137people ages 16 to 19 were taken from Sweetwater County, Wyoming, and 5 were found to be high school dropouts. Do these data indicate that the population proportion of high school dropouts on Oahu is different (either way) from that of Sweetwater County? Use a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 60 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 60 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 85 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
The highway department is testing two types of reflecting paint for concrete bridge end pillars. The...
The highway department is testing two types of reflecting paint for concrete bridge end pillars. The two kinds of paint are alike in every respect except that one is orange and the other is yellow. The orange paint is applied to 12 bridges, and the yellow paint is applied to 12 bridges. After a period of 1 year, reflectometer readings were made on all these bridge end pillars. (A higher reading means better visibility.) For the orange paint, the mean...
Women athletes at the a certain university have a long-term graduation rate of 67%. Over the...
Women athletes at the a certain university have a long-term graduation rate of 67%. Over the past several years, a random sample of 38 women athletes at the school showed that 23 eventually graduated. Does this indicate that the population proportion of women athletes who graduate from the university is now less than 67%? Use a 1% level of significance. (a) What is the level of significance? State the null and alternate hypotheses. H0: p = 0.67; H1: p >...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....