Question

The lifetime of a certain type of battery is normally distributed with a mean of 1000...

The lifetime of a certain type of battery is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours. Find the probability that a randomly selected battery will last between 950 and 1050 hours

Homework Answers

Answer #1

This is a normal distribution question with

x1 = 950
x2 = 1050
P(950.0 < x < 1050.0)=?

This implies that
P(950.0 < x < 1050.0) = P(-0.5 < z < 0.5) = P(Z < 0.5) - P(Z < -0.5)
P(950.0 < x < 1050.0) = 0.6914- 0.3085
P(950.0 < x < 1050.0) = 0.3829
PS: you have to refer z score table to find the final probabilities.
Please hit thumps up if the answer helped you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The lifetime of a particular component is normally distributed with a mean of 1000 hours and...
The lifetime of a particular component is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours. Find the probability that a randomly drawn component will last between 800 and 950 hours. Question 12 options: 0.9378 0.2857 0.6687 0.3784
It is known that the lifetime of a certain type of light bulb is normally distributed...
It is known that the lifetime of a certain type of light bulb is normally distributed with a mean lifetime of 1,060 hours and a standard deviation of 125 hours. What is the probability that a randomly selected light bulb will last between 1,000 and 1,100 hours?
The lifetime of a light bulb in a certain application is normally distributed with mean =...
The lifetime of a light bulb in a certain application is normally distributed with mean = 1000 hours and a standard deviation = 100 hours. A) What is the probability that a lightbulb will last more than 1100 hours? B) Find the 10th percentile of the lifetimes C) What is the probability that the lifetime of a light bulb is between 900 and 1100 hours?
The lifetime of a certain type of battery is known to be normally distributed with a...
The lifetime of a certain type of battery is known to be normally distributed with a population standard deviation of 20 hours. A sample of 50 batteries had a mean lifetime of 120.1 hours. a. What is the point estimate? b. Calculate the sampling error. c. Construct a 95% confidence interval for the population mean. Explain the answer in a sentence.
The lifetime of a certain type of battery is normally distributed with mean value 13 hours...
The lifetime of a certain type of battery is normally distributed with mean value 13 hours and standard deviation 1 hour. There are nine batteries in a package. What lifetime value is such that the total lifetime of all batteries in a package exceeds that value for only 5% of all packages? (Round your answer to two decimal places.) hours
The lifetime of a certain type of battery is normally distributed with mean value 11 hours...
The lifetime of a certain type of battery is normally distributed with mean value 11 hours and standard deviation 1 hour. There are nine batteries in a package. What lifetime value is such that the total lifetime of all batteries in a package exceeds that value for only 5% of all packages? (Round your answer to two decimal places.) hours
The lifetime of a certain type of battery is normally distributed with mean value 11 hours...
The lifetime of a certain type of battery is normally distributed with mean value 11 hours and standard deviation 1 hour. There are four batteries in a package. What lifetime value is such that the total lifetime of all batteries in a package exceeds that value for only 5% of all packages? (Round your answer to two decimal places.)
The lifetime of a certain automobile tire is normally distributed with mean 40 (thousand miles) and...
The lifetime of a certain automobile tire is normally distributed with mean 40 (thousand miles) and standard deviation 5 ( thousand miles). if 8 tires are randomly selected, there would be an 83% probability that the mean tire lifetime would fall between what two values.
For a certain type of computers, the length of time between charges of the battery is...
For a certain type of computers, the length of time between charges of the battery is normally distributed with a mean of 42 hours and a standard deviation of 18 hours. a. If 20 computers are randomly selected, what is the probability that the mean charging time of their batteries is more than 45 hours? b. If 38 computers are randomly selected, what is the probability that the mean charging time of their batteries is between 37 and 40 hours?...
A certain brand of flood lamps has a lifetime that is normally distributed with a mean...
A certain brand of flood lamps has a lifetime that is normally distributed with a mean of 4,000 hours and a standard deviation of 310 hours. What proportion of these lamps will last between 3,690 and 4,465 hours?                b. What lifetime should the manufacturer advertise for these lamps in order that only 4% of the lamps will burn out before the advertised lifetime?