Question

3.Assume that the readings at freezing on a batch of thermometers are normally distributed with a...

3.Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading greater than 1.865°C. P(Z>1.865)=P(Z>1.865)= (Round to four decimal places)

4.Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading greater than -2.111°C. P(Z>−2.111)=P(Z>-2.111)= (Round to four decimal places)

5.About ____ % of the area under the curve of the standard normal distribution is between z=−0.213z=-0.213 and z=0.213z=0.213 (or within 0.213 standard deviations of the mean). (Notice that the percent sign is already there. You should round to two decimal places.)

6.Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between -2.154°C and -1.206°C.
P(−2.154<Z<−1.206)=P(-2.154<Z<-1.206)=  (Round to four decimal places)

7.The physical fitness of an athlete is often measured by how much oxygen the athlete takes in (which is recorded in milliliters per kilogram, ml/kg). The mean maximum oxygen uptake for elite athletes has been found to be 60.5 with a standard deviation of 8.7. Assume that the distribution is approximately normal.

Find the probability that an elite athlete has a maximum oxygen uptake of at most 37 ml/kg.  (Round answer to four decimal places.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that the readings at freezing on a batch of thermometers are normally distributed with a...
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between -2.75°C and 0°C. P ( − 2.75 < Z < 0 ) =
Assume that the readings at freezing on a batch of thermometers are normally distributed with a...
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between -2.95°C and 0.11°C. Give your answer to 4 decimal places.
Assume that the readings at freezing on a batch of thermometers are normally distributed with a...
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find P59, the 59-percentile. Round to 3 decimal places. This is the temperature reading separating the bottom 59% from the top 41%. P59 = °C
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a...
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than -1.503°C. P(Z<−1.503)=P(Z<-1.503)=
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a...
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between -1.404°C and 2.955°C. P(−1.404<Z<2.955)=
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a...
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0.244°C and 0.251°C. P(0.244<Z<0.251)
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a...
Assume that the readings at freezing on a bundle of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between -0.276°C and 1.304°C. P(−0.276<Z<1.304)=P(-0.276<Z<1.304)=
Assume that the readings at freezing on a batch of thermometers are normally distributed with a...
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find P99, the 99-percentile. This is the temperature reading separating the bottom 99% from the top 1%.
Assume that the readings at freezing on a batch of thermometers are Normally distributed with mean...
Assume that the readings at freezing on a batch of thermometers are Normally distributed with mean 0°C and standard deviation 1.00°C. Find P1, the 1-percentile of the distribution of temperature readings. This is the temperature reading separating the bottom 1% from the top 99%. °C Round to 2 places.
Assume that the readings at freezing on a batch of thermometers are approximately Normally distributed with...
Assume that the readings at freezing on a batch of thermometers are approximately Normally distributed with a mean of 0°C and a standard deviation of 1.00°C. Find the proportion of thermometers with a reading outside of the interval -1.35°C and 1.35°C.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT