Question

A box contains 2 coins: one has probability 1/2 of heads, while the other has unknown...

A box contains 2 coins: one has probability 1/2 of heads, while the other has unknown probability p, 0<=p<=1, of heads. A coin is selected at random and flipped. It is then replaced in the box, and this entire procedure is repeated another time. If 2 heads are observed, what is the value of the maximum likelihood estimator of p?

A) 1/4

B) 1/2

C) 3/4

D) 1

E) doesn't exist

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box contains 4 coins: coin1 has both sides tails; coin2 has both sides heads; coin3...
A box contains 4 coins: coin1 has both sides tails; coin2 has both sides heads; coin3 has both sides heads; coin4 is a regular coin (one side heads, one side tails) a) If we randomly choose one coin from the box and flip, what is the probability we get heads? b) Suppose we randomly choose a coin, flip, and get heads. What is the probability that the coin that was chosen is the regular coin?
When coin 1 is flipped, it lands on heads with probability   3/5  ; when coin 2...
When coin 1 is flipped, it lands on heads with probability   3/5  ; when coin 2 is flipped it lands on heads with probability  4/5 . (a) If coin 1 is flipped 12 times, find the probability that it lands on heads at least 10 times. (b) If one of the coins is randomly selected and flipped 10 times, what is the probability that it lands on heads exactly 7 times? (c) In part (b), given that the first of...
When coin 1 is flipped, it lands on heads with probability   3 5  ; when coin...
When coin 1 is flipped, it lands on heads with probability   3 5  ; when coin 2 is flipped it lands on heads with probability   4 5  . (a) If coin 1 is flipped 11 times, find the probability that it lands on heads at least 9 times. (b) If one of the coins is randomly selected and flipped 10 times, what is the probability that it lands on heads exactly 7 times? (c) In part (b), given that the...
A magician has 20 coins in his pocket. Twelve of these coins are normal fair coins...
A magician has 20 coins in his pocket. Twelve of these coins are normal fair coins (with one head and one tail) and eight are defective coins with heads on both sides. The magician randomly draws a coin from his pocket and flips it. Given that the flipped coin shows a head, what is the probability that it is defective? Select one: 4/7 8/20 1 1/2
A black bag contains two coins: one fair, and the other biased (with probability 3/4 of...
A black bag contains two coins: one fair, and the other biased (with probability 3/4 of landing heads). Suppose you pick a coin from the bag — you are twice as likely to pick the fair coin as the biased one — and flip it 8 times. Given that three of the first four flips land heads, what is the expected number of heads in the 8 flips?
coin 1 has probability 0.7 of coming up heads, and coin 2 has probability of 0.6...
coin 1 has probability 0.7 of coming up heads, and coin 2 has probability of 0.6 of coming up heads. we flip a coin each day. if the coin flipped today comes up head, then we select coin 1 to flip tomorrow, and if it comes up tail, then we select coin 2 to flip tomorrow. find the following: a) the transition probability matrix P b) in a long run, what percentage of the results are heads? c) if the...
Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment...
Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment for which there are two disjoint events, with equal probabilities, that we call "heads" and "tails". a. given c1 and c2, where c1 lands heads up with probability 2/3 and c2 lands heads up with probability 1/4, construct a "fair coin flip" experiment. b. given one coin with unknown probability p of landing heads up, where 0 < p < 1, construct a "fair...
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin...
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin #2, which lands heads with probability 0.1. I conduct an experiment as follows. First I toss a fair coin to decide which biased coin I pick (say, if it lands heads, I pick coin #1, and otherwise I pick coin #2) and then I toss the biased coin twice. Let A be the event that the biased coin #1 is chosen, B1 the event...
Box 1 contains 2 red balls and one blue ball. Box 2 contains 3 blue balls...
Box 1 contains 2 red balls and one blue ball. Box 2 contains 3 blue balls and 1 red ball. A coin is tossed. If it falls heads up, box 1 is selected and a ball is drawn. If it falls tails up, box 2 is selected and a ball is drawn. Find the probability of selecting a red ball.
We have two coins whose heads are marked 2 and tails marked 1. One is a...
We have two coins whose heads are marked 2 and tails marked 1. One is a fair coin and the other is a biased coin whose probabilities of 'Head' are 1/2 and 1/4 respectively.Suppose we toss the two coins simultaneously. Let S and P be the sum and product of all the outcome numbers on the coins, respectively. 1. Compute the mean and variance of S. Calculate up to 3 decimal places (round the number at 4th place) if necessary....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT