Question

Write a proof to show that if X is a Binomial random variable with parameters n...

Write a proof to show that if X is a Binomial random variable with parameters n and p, then its variance is npq.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Show that if X is a Poisson random variable with parameter λ, then its variance...
1. Show that if X is a Poisson random variable with parameter λ, then its variance is λ 2.Show that if X is a Binomial random variable with parameters n and p, then the its variance is npq.
Let X be a binomial random variable with parameters n = 500 and p = 0.12....
Let X be a binomial random variable with parameters n = 500 and p = 0.12. Use normal approximation to the binomial distribution to compute the probability P (50 < X ≤ 65).
The random variable X has a Binomial distribution with parameters n = 9 and p =...
The random variable X has a Binomial distribution with parameters n = 9 and p = 0.7 Find these probabilities: (see Excel worksheet) Round your answers to the nearest hundredth P(X < 5) P(X = 5) P(X > 5)
X is a binomial random variable with the parameters shown. Use the special formulas to compute...
X is a binomial random variable with the parameters shown. Use the special formulas to compute its mean μ and standard deviation σ. 1. n = 8, p = 0.43 2. n = 47, p = 0.82 3. n = 1200, p = 0.44 4. n = 2100, p = 0.62
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Using the joint pdf function of X and Y, set up the summation /integration (whichever is relevant) that gives the expected value for X, and COMPUTE its value.
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Using the joint pdf function of X and Y, set up the summation /integration (whichever is relevant) that gives the expected value for X, and COMPUTE its value.
Let X be a binomial random variable with n = 10 and p = 0.2. Find...
Let X be a binomial random variable with n = 10 and p = 0.2. Find the following values. (Round your answers to three decimal places.) (a) P(X = 4) (b) P(X ≥ 4) (c) P(X > 4) (d) P(X ≤ 4) (e) μ = np μ = 2.00 (correct) (f) σ = npq σ = 1.265 (correct)
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Derive the joint probability distribution function for X and Y. Make sure to explain your steps.
If the random variable X follows a binomial distribution with the probability of success given by...
If the random variable X follows a binomial distribution with the probability of success given by p, show that the variance of X is equal to np(1-p). [Hint:Consider first a Bernoulli probability distribution with n=1.]
Let X be a binomial random variable with E(X) = 7 and Var(X) = 2.1. (a)...
Let X be a binomial random variable with E(X) = 7 and Var(X) = 2.1. (a) [5 pts] Find the parameters n and p for the binomial distribution. n = p = (b) [5 pts] Find P(X = 4). (Round your answer to four decimal places.) (c) [5 pts] Find P(X > 12)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT