Question

Let the random variables X and Y have joint cdf as follows: F(x,y) = {1-e^-4x-e^-5y+e^-4x-5y, x>0,...

Let the random variables X and Y have joint cdf as follows:

F(x,y) = {1-e^-4x-e^-5y+e^-4x-5y, x>0, y>0

0, otherwise

Find the correlation coefficient of X and Y

Homework Answers

Answer #1

SOLUTION:

please give a rating for this solution,THANK YOU.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (X, Y ) have joint cdf F, and let G be the cdf of the...
Let (X, Y ) have joint cdf F, and let G be the cdf of the random variable X + Y . Show that F(x, x) ≤ G(2x) for all x ∈ R
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0...
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0 < 4x < y < 12 and 0 otherwise Find Cov (X,Y).
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y)...
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y) = 2 , 0 < x < y < 1 = 0, otherwise Calculate P(x+y >1)
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero...
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero otherwise. 1. Find the constant, c, such that f(x,y) is a valid pmf. 2. Find the marginal distributions for X and Y . 3. Find the marginal means for both random variables. 4. Find the marginal variances for both random variables. 5. Find the correlation of X and Y . 6. Are the two variables independent? Justify.
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0 < x < < y < 1 and 0 otherwise. Find the marginal pdf of T if S=X and T = XY. Use the joint pdf of S = X and T = XY.
Let X and Y be random variables with joint pdf f(x, y) = 2 + x...
Let X and Y be random variables with joint pdf f(x, y) = 2 + x − y, for 0 <= x <= 1, 1 <= y <= 2. (a) Find the probability that min(X, Y ) <= 1/2. (b) Find the probability that X + √ Y >= 4/3.
Suppose X & Y are jointly continuous-type random variables with the following joint CDF: If u>=0...
Suppose X & Y are jointly continuous-type random variables with the following joint CDF: If u>=0 and v>=0: F_X,Y(u,v) = { min(1-e^-u,1-e^-v); if 0<=u<1, OR 0<=v<1 1; else } If u<0 or v<0: F_X,Y(u,v) = 0. What is E[X]?