Let X ~ N(181; 19)
Find: (|X-181|> 44)
Let us start with expanding the probability
MEAN= 181 AND VARIANCE= 19 , Standard deviation=4.36
Since μ=181 and σ=4.36 we have:
So P ( 137<X<225 )=P ( 137−181< X−μ<225−181 )=P ((137−181)/4.36<(X−μ)/σ<(225−181)/4.36)
Since Z=(x−μ)/σ , (137−181)/4.36=−10.09 and (225−181)/4.36=10.09 we have:
P ( 137<X<225 )=P ( −10.09<Z<10.09 )
Use the standard normal table to conclude that:
P ( −10.09<Z<10.09 )=1
Get Answers For Free
Most questions answered within 1 hours.