The accompanying data are the caloric contents and the sugar contents (in grams) of
1111
high-fiber breakfast cereals. Find the equation of the regression line. Then construct a scatter plot of the data and draw the regression line. Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. If the x-value is not meaningful to predict the value of y, explain why not.
(a)
xequals=150150 cal |
(b)
xequals=9090 cal |
(c)
xequals=175175 cal |
(d)
xequals=198198 cal |
LOADING...
Click the icon to view the table of caloric and sugar contents.
Scatter plot:
X | Y | X^2 | Y^2 | XY | |||
140 | 6 | 19600 | 36 | 840 | |||
190 | 10 | 36100 | 100 | 1900 | |||
170 | 6 | 28900 | 36 | 1020 | |||
170 | 9 | 28900 | 81 | 1530 | |||
180 | 10 | 32400 | 100 | 1800 | |||
180 | 16 | 32400 | 256 | 2880 | |||
200 | 14 | 40000 | 196 | 2800 | |||
200 | 17 | 40000 | 289 | 3400 | |||
190 | 19 | 36100 | 361 | 3610 | |||
160 | 10 | 25600 | 100 | 1600 | |||
170 | 11 | 28900 | 121 | 1870 | |||
SUM | 1950 | 128 | 348900 | 1676 | 23250 | ||
n | 11 | ||||||
Mean | 177.2727 | 11.63636364 | |||||
SSxx | 3218.182 | Sum(x^2) - ((Sum(x))^2 /n) | SSR | 97.1302 | slope * Ssxy | MSR | 97.1302 |
Ssyy | 186.5455 | Sum(y^2) - ((Sum(y))^2 /n) | SSE | 89.41525 | SST-SSR | MSE | 9.935028 |
Ssxy | 559.0909 | Sum(xy) - (Sum(x)*Sum(y)/n) | SST | 186.5455 | Ssyy | F | 9.77654 |
slope | 0.173729 | Ssxy/SSxx | |||||
intercept | -19.161 | Mean Y - Mean X * Slope | |||||
Se | 3.151988 | SQRT(SSE/(n-2)) | |||||
Sb1 | 0.055562 | Se/SQRT(SSxx) | |||||
r | 0.721581 | SSXY/SQRT(SSxx*Ssyy) | |||||
r^2 | 0.520678 |
Y = -19.161 + 0.1737 * X
a )
If X = 150
Y = -19.161 + 0.1737 * X
Y = -19.161 + 0.1737 * 150 = 6.894
b)
If X = 90
Y = -19.161 + 0.1737 * X
Y = -19.161 + 0.1737 * 90 = -3.528
it is not meaningful, because sugar decreasing while calories are decreasing
c)
If X =175
Y = -19.161 + 0.1737 * X
Y = -19.161 + 0.1737 * 175 = 11.2365
d)
If X =198
Y = -19.161 + 0.1737 * X
Y = -19.161 + 0.1737 * 198 = 15.2316
Except X = 90 other values are meaningful because Y value increasing with X value
Get Answers For Free
Most questions answered within 1 hours.