Question

A random sample of 100observations from a population with standard deviation 23.99 yielded a sample mean...

A random sample of 100observations from a population with standard deviation 23.99 yielded a sample mean of 94.1

1. Given that the null hypothesis is μ=90μ=90 and the alternative hypothesis is μ>90μ>90 using α=.05α=.05, find the following:
(a) Test statistic ==
(b) P - value:
(c) The conclusion for this test is:

A. There is insufficient evidence to reject the null hypothesis
B. Reject the null hypothesis
C. None of the above

2. Given that the null hypothesis is μ=90μ=90 and the alternative hypothesis is μ≠90μ≠90 using α=.05α=.05, find the following:
(a) Test statistic ==
(b) P - value:
(c) The conclusion for this test is:

A. Reject the null hypothesis
B. There is insufficient evidence to reject the null hypothesis
C. None of the above

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of 100100 observations from a population with standard deviation 10.7610.76 yielded a sample...
A random sample of 100100 observations from a population with standard deviation 10.7610.76 yielded a sample mean of 91.891.8. 1. Given that the null hypothesis is μ=90μ=90 and the alternative hypothesis is μ>90μ>90 using α=.05α=.05, find the following: (a) Test statistic ==   (b)  P - value:    (c) The conclusion for this test is: A. There is insufficient evidence to reject the null hypothesis B. Reject the null hypothesis C. None of the above 2. Given that the null hypothesis is μ=90μ=90...
A random sample of 36 values is drawn from a mound-shaped and symmetric distribution. The sample...
A random sample of 36 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 14 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 13.5. (a) Is it appropriate to use a Student's t distribution? Explain. Yes, because the x distribution is mound-shaped and symmetric and σ is unknown.No, the x distribution is skewed left.    No, the x distribution...
You may need to use the appropriate appendix table or technology to answer this question. Consider...
You may need to use the appropriate appendix table or technology to answer this question. Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.11. The population standard deviation is 3. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) At α = 0.05, state your conclusion....
The age distribution of the Canadian population and the age distribution of a random sample of...
The age distribution of the Canadian population and the age distribution of a random sample of 455 residents in the Indian community of a village are shown below. Age (years) Percent of Canadian Population Observed Number in the Village Under 5 7.2%                   45             5 to 14 13.6%                   74             15 to 64 67.1%                   286             65 and older 12.1%                   50             Use a 5% level of significance to test the claim that the age distribution of the general Canadian population fits the age...
A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to...
A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to perform the required hypothesis test about the mean, μ, of the population from which the sample was drawn. Use the critical-value approach. , , n = 11, H0: μ = 18.7, Ha: μ ≠ 18.7, α = 0.05 Group of answer choices Test statistic: t = 1.03. Critical values: t = ±2.201. Do not reject H0. There is not sufficient evidence to conclude that...
Consider the following hypothesis test. H0: p = 0.30 Ha: p ≠ 0.30 A sample of...
Consider the following hypothesis test. H0: p = 0.30 Ha: p ≠ 0.30 A sample of 500 provided a sample proportion p = 0.275. (a) Compute the value of the test statistic. (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.) p-value = (c) At α = 0.05, what is your conclusion? Do not reject H0. There is sufficient evidence to conclude that p ≠ 0.30.Do not reject H0. There...
The age distribution of the Canadian population and the age distribution of a random sample of...
The age distribution of the Canadian population and the age distribution of a random sample of 455 residents in the Indian community of a village are shown below. Age (years) Percent of Canadian Population Observed Number in the Village Under 5 7.2%                   51             5 to 14 13.6%                   69             15 to 64 67.1%                   292             65 and older 12.1%                   43             Use a 5% level of significance to test the claim that the age distribution of the general Canadian population fits the age...
The following table shows ceremonial ranking and type of pottery sherd for a random sample of...
The following table shows ceremonial ranking and type of pottery sherd for a random sample of 434 sherds at an archaeological location. Ceremonial Ranking Cooking Jar Sherds Decorated Jar Sherds (Noncooking) Row Total A 87 48 135 B 90 55 145 C 74 80 154 Column Total 251 183 434 Use a chi-square test to determine if ceremonial ranking and pottery type are independent at the 0.05 level of significance. (a) What is the level of significance? (b) Find the...
Test the claim about the population​ mean,μ​, at the given level of significance using the given...
Test the claim about the population​ mean,μ​, at the given level of significance using the given sample statistics ​Claim: μ not equal 7000​; alpha=0.09; sigma (SD) =374. Sample​statistics: x =7300​, n=34 1. identify the null and alternative hypotheses 2. what is the standardized test statistic 3. Determine the critical value (round to two decimal places as needed) 4. Determine the outcome and conclusion of the test (choose from choices below) a. Fail to reject H0 - not enough evidence to...
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.01 years, with sample standard deviation s = 0.76 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT