Question

How would you estimate the regression model, {testscri = β0 + β1 stri + β2 incomei...

How would you estimate the regression model, {testscri = β0 + β1 stri + β2 incomei + ui}

in Stata if testscr, str, and income are the variable names in the dataset, corresponding to the variables in the regression modeld? no additional information is needed to answer this.

1) type the command "reg testscr str, r" to get the estimate of β1 and then type the command "reg testscr income, r" to get the estimate of β2 .

2) type the command "reg str testscr income, r"

3) type the command "reg str income testscr, r"

4) type the command "reg testscr str income, r"

Homework Answers

Answer #1

Since data is not given, above is code how to write in Stata .

first import data in stata and then write  reg testscr str income to run a regression model and get the result which shows estimates of B1 and B2 and r-sqaure , Adjusted r sqaure and p value and t test result also provided

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=21.0213; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950.According to these results the relationship between C and Y is: A. no relationship B. impossible to tell C. positive D. negative 2. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + ...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + ui This model has been estimated by OLS. The Gretl output is below. Model 1: OLS, using observations 1-52 coefficient std. error t-ratio p-value const -0.5186 0.8624 -0.6013 0.5506 X1 0.1497 0.4125 0.3630 0.7182 X2 -0.2710 0.1714 -1.5808 0.1208 X3 0.1809 0.6028 0.3001 0.7654 X4 0.4574 0.2729 1.6757 0.1006 X5 2.4438 0.1781 13.7200 0.0000 Mean dependent var 1.3617 S.D. dependent...
The following multiple regression model uses wage, which is hourly earnings in dollars, as dependent variable,...
The following multiple regression model uses wage, which is hourly earnings in dollars, as dependent variable, IQ as in IQ test scores as independent variables to run a regression as follows. STATA commands and outputs are given on the STATA output page. Answer the following questions. (23 points) wage= β0 +β1 IQ + u According to the STATA output, what are the minimum and the maximum for education years (denoted as educ) in the sample? (4 points) Write down the...
Consider the following model: Yi = β0 + β1(X1)i + β2(X2)i + β3(X3)i + β4(X4)i +...
Consider the following model: Yi = β0 + β1(X1)i + β2(X2)i + β3(X3)i + β4(X4)i + ui Where: Y = Score in Standardized Test X1 = Student IQ X2 = School District X3 = Parental Education X4 = Parental Income The data for 5,000 students was collected via a simple random sample of all 8th graders in New Jersey.  Suppose you want to test the hypothesis that parental attributes have no impact on student achievement.  Which of the following is most accurate?...
Consider the following model: Yi = β0 + β1(X1)i + β2(X2)i + β3(X3)i + β4(X4)i +...
Consider the following model: Yi = β0 + β1(X1)i + β2(X2)i + β3(X3)i + β4(X4)i + ui Where: Y = Score in Standardized Test X1 = Student IQ X2 = School District X3 = Parental Education X4 = Parental Income The data for 5,000 students was collected via a simple random sample of all 8th graders in New Jersey. Suppose you want to test the hypothesis that parental attributes have no impact on student achievement. Which of the following is...
You wish to estimate as precisely as possible the slope β1 in the simple linear regression...
You wish to estimate as precisely as possible the slope β1 in the simple linear regression model yi = β0 + β1xi + ei , i = 1, . . . , 4. Each pair of observations (xi , yi) costs $1.00 and your budget is $4.00. A data analyst proposes that you consider one of the following two options: (a) Make two y-observations at x = 1 and a further two at x = 4; (b) Make one y-observation...
Suppose a statistician built a multiple regression model for predicting the total number of runs scored...
Suppose a statistician built a multiple regression model for predicting the total number of runs scored by a baseball team during a season. Using data for n=200 ​samples, the results below were obtained. Complete parts a through d. Ind. Var. β estimate Standard Error Ind. Var.. β estimate Standard Error Intercept 3.92 13.05 Doubles x3 0.63 0.02 Walks x1 0.22 0.05 Triples x4 1.15 0.17 Singles x2 0.43 0.05 Home runs (x5) 1.54 0.02 a. Write the least squares prediction...
You want to construct a multiple linear regression model. The dependent variable is Y and independent...
You want to construct a multiple linear regression model. The dependent variable is Y and independent variables are x1 and x2. The samples and STATA outputs are provided: How would you make an ANOVA from the following information? Y X1 X2 3 2 1 4 1 2 6 3 3 6 3 4 7 4 5 STATA Y Coef. Std. Err. t P> abs. value (t) 95% confidence interval X1 0.25 0.4677072 0.53 0.646 -1.762382 , 2.262382 X2 0.85 0.3372684...
Suppose a statistician built a multiple regression model for predicting the total number of runs scored...
Suppose a statistician built a multiple regression model for predicting the total number of runs scored by a baseball team during a season. Using data for n=200 ​samples, the results below were obtained. Complete parts a through d. Ind. Var.I β estimate Standard Error Ind. Var.. β estimate Standard Error Intercept 3.75 13.19 Doubles (x3) 0.63 0.03 Walks (x1) 0.23 0.04 Triples (x4) 1.02 0.21 Singles x2 0.42 0.05 Home Runs (x 5) 1.59 0.05 a. Write the least squares...
Multiple regression model Consider a dataset for 500 students living in Melbourne with the following variables...
Multiple regression model Consider a dataset for 500 students living in Melbourne with the following variables measured in 2019 --- expenditure on public transport, ?E, measured in dollars; number of days he/she attended school, ?S; number of days not attended school, ??NS (which is equal to 365−?365−S); income, ?I, measured in dollars; and age in year, ?A. A researcher is interested in estimating the following model using Eviews: ??=?1+?2??+?3???+?4??+?5??+??Ei=β1+β2Si+β3NSi+β4Ii+β5Ai+ei. Without any further information, we know for sure that one assumption...