Question

A basket contains 3 green and 2 yellow balls. One ball will be selected at random...

A basket contains 3 green and 2 yellow balls. One ball will be selected at

random and then not replaced. Then a second ball will be randomly selected

from the basket. G= # of green balls observed during the experiment.

16a) Draw a tree diagram with probabilities written on the branches. At the end of

each branch, identify each outcome of the Sample Space and its probability.

16b) Write the pmf (probability mass function) of in column format, identifying its

possible values and the probabilities of each value. (See the next problem for an

example of what a pmf in column format looks like.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A container has 4 green balls, and 9 yellow balls. A ball is selected at random...
A container has 4 green balls, and 9 yellow balls. A ball is selected at random from the container, its color is noted and it is NOT replaced. A second ball is selected and its color is noted. (a) What is the probability that the neither of the balls selected is green? (b) What is the probability that the balls selected are of the same color? (c) What is the probability that exactly one of the balls selected is green?...
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains...
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains 3 red balls, 5 green balls and 2 yellow balls. Box 3 contains 2 red balls, 5 green balls and 3 yellow balls. Box 4 contains 1 red ball, 5 green balls and 4 yellow balls. Which of the following variables have a binomial distribution? (I) Randomly select three balls from Box 1 with replacement. X = number of red balls selected (II) Randomly...
A basket contains 5 Red balls, 1 Blue ball and 1 Green ball. Three balls were...
A basket contains 5 Red balls, 1 Blue ball and 1 Green ball. Three balls were selected randomly without replacement. Find the probability that the three selected balls contain at least two red balls.
An urn initially contains 6 red and 8 green balls. Each time a ball is selected,...
An urn initially contains 6 red and 8 green balls. Each time a ball is selected, its color is recorded, and it is replaced in the urn along with 2 other balls of the same color. Compute the probability that: If the second ball selected is green, what is the probability that the first one was red?
A box contains 4 red balls, 3 yellow balls, and 3 green balls. You will reach...
A box contains 4 red balls, 3 yellow balls, and 3 green balls. You will reach into the box and blindly select a ball, take it out, and then place it to one side. You will then repeat the experiment, without putting the first ball back. Calculate the probability that the two balls you selected include a yellow one and a green one.
A bag contains 10 white, 12 blue, 13 red, 7 yellow, and 8 green wooded balls....
A bag contains 10 white, 12 blue, 13 red, 7 yellow, and 8 green wooded balls. A ball is selected from the bag, its color noted, then replaced. You then draw a second ball, note its color and then replace the ball. What is the probability of selecting 2 white balls? Round to the nearest ten-thousandth.
An urn contains 6 green ball, 7 blue balls and 5 yellow balls. You are asked...
An urn contains 6 green ball, 7 blue balls and 5 yellow balls. You are asked to draw 3 balls, one at a time (without replacement). Find the probability that a green is pulled first, then another green ball then a blue ball.
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls...
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls for a total of 13 balls. If 5 balls are randomly selected without replacement, what is the probability of selecting at least two red balls given that at least one yellow ball is selected? Please show all steps.
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen...
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement. Define the following events: A:{ One of the balls is yellow } B:{ At least one ball is red } C:{ Both balls are green } D:{ Both balls are of the same color } Find the following conditional probabilities: P(B\Ac)= P(D\B)=
One ball is chosen at random from a bag containing 12 red balls, 3 yellow balls,...
One ball is chosen at random from a bag containing 12 red balls, 3 yellow balls, and 5 green balls. i. If 1000 trials are completed (with replacement), about how many times would you expect to select a red ball? ii. If two balls are selected at random without replacement, what is the probability that they are both red? Write your answer as a decimal rounded to 3 decimal places.