Question

An NHANES report gives data for 644 women aged 20–29 years. The BMI of these 644...

An NHANES report gives data for 644 women aged 20–29 years. The BMI of these 644 women was ?¯= 27 . On the basis of this sample, we want to estimate the BMI ? in the population of all 20.6 million women in this age group. We treated these data as an SRS from a Normally distributed population with standard deviation ?=7.8 . (

a) Suppose we had an SRS of just 90 young women. What would be the margin of error for 95% confidence?

(b) Suppose we had an SRS of 444 young women. What would be the margin of error for 95% confidence?

(Enter your answer rounded to four decimal places.)

c) Suppose we had an SRS of 1633 young women. What would be the margin of error for 95% confidence?

(d) Select an explanation that correctly describes how increasing the sample size changes the margin of error of a confidence interval when the confidence level and population standard deviation remain the same.

Margin of error decreases as ? increases.

Margin of error is unaffected by the sample size ? .

Margin of error remains the same as ? increases.

Margin of error increases as ? increases.

Homework Answers

Answer #1

Solution:-

N = 644, ?¯= 27, ? = 7.8

a) The margin of error for 95% confidence is 1.6115

n = 90

M.E = 1.96*0.82219

M.E = 1.6115

b) The margin of error for 95% confidence is 0.7255.

n = 444

M.E = 1.96*0.37017

M.E = 0.7255

c) The margin of error for 95% confidence is 0.3783.

n = 1633

M.E = 1.96*0.19302

M.E = 0.3783

d) Margin of error decreases as ? increases.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2.        An NHANES report gives data for 654 women aged 20 to 29 years. The mean...
2.        An NHANES report gives data for 654 women aged 20 to 29 years. The mean BMI for these 654 women was x = 26.8. On the basis of this sample, we are going to estimate the mean    BMI μ in the population of all 20.6 million women in this age group. We will assume that the NHANES sample is a SRS from a normal distribution with known standard deviation σ = 7.5 a) Construct 3 confidence intervals for the...
An NHANES report gives data for 647 women aged 20–29 years. The BMI of these 647...
An NHANES report gives data for 647 women aged 20–29 years. The BMI of these 647 women was ?¯= 25.8 . On the basis of this sample, we want to estimate the BMI ? in the population of all 20.6 million women in this age group. We treated these data as an SRS from a Normally distributed population with standard deviation ?=7.1 . (a) Give three confidence intervals for the mean BMI ? in this population, using 90%,95%,and 99% confidence....
We have the survey data on the body mass index (BMI) of 659 young women. The...
We have the survey data on the body mass index (BMI) of 659 young women. The mean BMI in the sample was x¯=25.5. We treated these data as an SRS from a Normally distributed population with standard deviation σ=7.8 . Give confidence intervals for the mean BMI and the margins of error for 90%, 95%, and 99% confidence.
We have the survey data on the body mass index (BMI) of 662 young women. The...
We have the survey data on the body mass index (BMI) of 662 young women. The mean BMI in the sample wasx¯¯¯=25.3x¯=25.3. We treated these data as an SRS from a Normally distributed population with standard deviationσ=σ=7.8 . Give confidence intervals for the true population mean BMI and the margins of error for 90%, 95%, and 99% confidence. Conf. Level Interval (±±0.01) margins of error (±±0.0001) 90% to 95% to 99% to
Example 14.1 (page 360) described NHANES survey data on the body mass index (BMI) of 654...
Example 14.1 (page 360) described NHANES survey data on the body mass index (BMI) of 654 young women. The mean BMI in the sample was x¯¯¯x¯ = 26.8. We treated these data as an SRS from a Normally distributed population with standard deviation σσ = 7.5. (a) Give three confidence intervals for the mean BMI μμ in this population, using 90%, 95%, and 99% confidence. (b) What are the margins of error for 90%, 95%, and 99% confidence? How does...
We are interested in studying the BMI of group of middle-aged men at risk for developing...
We are interested in studying the BMI of group of middle-aged men at risk for developing diabetes mellitus. The standard deviation of the BMI for the population is 2.65 kg/m2. Determine the number of subjects needed to estimate the true mean BMI within 0.75 units using a 95% confidence interval. What is the sample size needed for the confidence interval estimate? Round up to the next integer.
According to the National Health Statistics Reports, a sample of 33 men aged 20–29 years had...
According to the National Health Statistics Reports, a sample of 33 men aged 20–29 years had a mean waist size of 36.9 inches with a sample standard deviation of 8.8 inches. What is our margin of error for a 95% confidence interval? Round to 3 decimal places
Assumed that the body mass index(BMI) of all American young women follows a Normal distribution with...
Assumed that the body mass index(BMI) of all American young women follows a Normal distribution with standard deviation σ =7.5 How large a sample would be needed to estimate the mean BMI µ in this population to be within ±1 with 95% confidence?
Among American women aged 20 to 29 years, mean height = 64.2 inches, with a standard...
Among American women aged 20 to 29 years, mean height = 64.2 inches, with a standard deviation of 2.7 inches. A)Use Chebyshev’s Inequality to construct an interval guaranteed to contain at least 75% of all such women`s heights. Include appropriate units. B)Suppose that a random sample size of n = 50 is selected from this population of women. What is the probability that the sample mean height will be less than 63.2 inches?
(18.12) Example 16.1 assumed that the body mass index (BMI) of all American young women follows...
(18.12) Example 16.1 assumed that the body mass index (BMI) of all American young women follows a Normal distribution with standard deviation ? = 7.5. How large a sample would be needed to estimate the mean BMI ? in this population to within ±1 with 95% confidence? Give your answer as a whole number. Fill in the blank: