Let P(A) = 0.66, P(B | A) = 0.51, and P(B | Ac) = 0.27. Use a probability tree to calculate the following probabilities: (Round your answers to 3 decimal places.)
a. | P(Ac) | |
b. | P(A ∩ B) | |
P(Ac ∩ B) | ||
c. | P(B) | |
d. | P(A | B) | |
Given that ,
P(A) = 0.66 , P(B/A) = 0.51, P(B/Ac) = 0.27
a) P(Ac) = 1 - P(A) = 1 - 0.66 = 0.34
b) P(A ∩ B) :
P(B/A) = P(A ∩ B) / P(A)
P(A ∩ B) = P(B/A) * P(A)
P(A ∩ B) = 0.51 * 0.66 = 0.3366
P(A ∩ B) = 0.3366
P(Ac ∩ B) : |
P(B | Ac) = P(Ac ∩ B) / P(Ac)
P(Ac ∩ B) = P(B | Ac) * P(Ac)
P(Ac ∩ B) = 0.27 * 0.34 = 0.0918
P(Ac ∩ B) = 0.0918
c) P(B) = P(Ac ∩ B) + P(A ∩ B)
=0.0918 + 0.3366 = 0.4284
P(B) = 0.4284
d) P(A | B) = P(A ∩ B) / P(B)
= 0.3366 / 0.4284 = 0.7857
P(A | B) = 0.7857
Get Answers For Free
Most questions answered within 1 hours.