Question

Determine the mean and variance of the random variable with the probability density function f(x)=1.6(1-.8x), 0<x≤1.25

Determine the mean and variance of the random variable with the probability density function

f(x)=1.6(1-.8x), 0<x≤1.25

Homework Answers

Answer #1

The probability density function (PDF) of X is

Now,

The mean of X is

Moreover,

Hence,

The variance of X is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
- Determine the cumulative distribution function for the random variable with probability density function ?(?) =...
- Determine the cumulative distribution function for the random variable with probability density function ?(?) = 1 − 0.5? for 0 < ? < 2 millimeters. - Determine the mean and variance of the random variable with probability density function
suppose x is a continuous random variable with probability density function f(x)= (x^2)/9 if 0<x<3 0...
suppose x is a continuous random variable with probability density function f(x)= (x^2)/9 if 0<x<3 0 otherwise find the mean and variance of x
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
Let X be the random variable with probability density function f(x) = 0.5x for 0 ≤...
Let X be the random variable with probability density function f(x) = 0.5x for 0 ≤ x  ≤ 2 and zero otherwise. Find the mean and standard deviation of the random variable X.
Suppose a random variable has the following probability density function: f(x)=3cx^2 (1-x) 0≤x≤1 a) What must...
Suppose a random variable has the following probability density function: f(x)=3cx^2 (1-x) 0≤x≤1 a) What must c be equal to for this to be a valid density function? b) Determine the mean of x, μ_x c) Determine the median of x, μ ̃_x d) Determine: P(0≤x≤0.5) ?
If f(x) is a probability density function of a continuous random variable, then f(x)=? a-0 b-undefined...
If f(x) is a probability density function of a continuous random variable, then f(x)=? a-0 b-undefined c-infinity d-1
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln 2 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
Let X be a random variable with probability density function fX (x) = I (0, 1)...
Let X be a random variable with probability density function fX (x) = I (0, 1) (x). Determine the probability density function of Y = 3X + 1 and the density function of probability of Z = - log (X).
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤...
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤ x < ∞ 0 otherwise } for some λ > 0. a. Compute the cumulative distribution function F(x), where F(x) = Prob(X < x) viewed as a function of x. b. The α-percentile of a random variable is the number mα such that F(mα) = α, where α ∈ (0, 1). Compute the α-percentile of the random variable X. The value of mα will...
The probability density function for a continuous random variable X is given by         f(x) = 0.6                 0<X<1...
The probability density function for a continuous random variable X is given by         f(x) = 0.6                 0<X<1               = 0.10(x)         1 ≤X≤ 3               = 0 otherwise Find the 85th percentile value of X.