The developer of a line of key cutting machines would like to include as part of its advertising the number of keys a user can expect from each blade. A sample of 10 blades revealed the following number of keys cut. |
2,108 2,700 2,175 3,016 2,629 1,839 1,928 2,061 2,236 2,648 The Estimated Population Mean is 2334. |
1.) Determine the 95% confidence interval for the population mean. (Round answer to 2 decimal places.) |
Confidence interval: ___________ and __________. |
Values ( X ) | Σ ( Xi- X̅ )2 | |
2108 | 51076 | |
2700 | 133956 | |
2175 | 25281 | |
3016 | 465124 | |
2629 | 87025 | |
1839 | 245025 | |
1928 | 164836 | |
2061 | 74529 | |
2236 | 9604 | |
2648 | 98596 | |
Total | 23340 | 1355052 |
Mean X̅ = Σ Xi / n
X̅ = 23340 / 10 = 2334
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 1355052 / 10 -1 ) = 388.0223
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.05 /2, 10- 1 ) = 2.262
2334 ± t(0.05/2, 10 -1) * 388.0223/√(10)
Lower Limit = 2334 - t(0.05/2, 10 -1) 388.0223/√(10)
Lower Limit = 2056.44
Upper Limit = 2334 + t(0.05/2, 10 -1) 388.0223/√(10)
Upper Limit = 2611.56
95% Confidence interval is ( 2056.44 , 2611.56
)
Get Answers For Free
Most questions answered within 1 hours.