Question

Q6/   Let X be a discrete random variable defined by the following probability function x 2...

Q6/

  Let X be a discrete random variable defined by the following probability function

x 2 3 7 9
f(x) 0.15 0.25 0.35 0.25

Give   P(4≤  X < 8)

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Q7/

Let X be a discrete random variable defined by the following probability function

x 2 3 7 9
f(x) 0.15 0.25 0.35 0.25

Let F(x) be the CDF of X. Give  F(7.5)

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Q8/

Let X be a discrete random variable defined by the following probability function :

x 2 6 9 13
f(x) 0.25 0.15 0.25 0.35

Give   E(X)

ــــــــــــــــــــــــــــــــــــــ

Q9/ Let X be a discrete random variable defined by the following probability function :

x 1 5 7 11
f(x) 0.15 0.25 0.35 0.25

Give  Var(X).

ـــــــــــــــــــــــــــــــــــــــــــــــــــ

Q10 / (Let X be a discrete random variable with variance Var(X)=3. Find Var(4X +7

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let x be a discrete random variable with the following probability distribution x: -1 , 0...
Let x be a discrete random variable with the following probability distribution x: -1 , 0 , 1, 2 P(x) 0.3 , 0.2 , 0.15 , 0.35 Find the mean and the standard deviation of x
1. Let X be a discrete random variable with the probability mass function P(x) = kx2...
1. Let X be a discrete random variable with the probability mass function P(x) = kx2 for x = 2, 3, 4, 6. (a) Find the appropriate value of k. (b) Find P(3), F(3), P(4.2), and F(4.2). (c) Sketch the graphs of the pmf P(x) and of the cdf F(x). (d) Find the mean µ and the variance σ 2 of X. [Note: For a random variable, by definition its mean is the same as its expectation, µ = E(X).]
Let the probability function of the random variable X be f(x) = { x⁄45 if x...
Let the probability function of the random variable X be f(x) = { x⁄45 if x = 1, 2, 3, ⋯ ⋯ ,9 ; 0 otherwise} Find E(X) and Var(X)
Let X be a discrete random variable with probability mass function (pmf) P (X = k)...
Let X be a discrete random variable with probability mass function (pmf) P (X = k) = C *ln(k) for k = e; e^2 ; e^3 ; e^4 , and C > 0 is a constant. (a) Find C. (b) Find E(ln X). (c) Find Var(ln X).
Let X be a discrete random variable with the range RX = {1, 2, 3, 4}....
Let X be a discrete random variable with the range RX = {1, 2, 3, 4}. Let PX(1) = 0.25, PX(2) = 0.125, PX(3) = 0.125. a) Compute PX(4). b) Find the CDF of X. c) Compute the probability that X is greater than 1 but less than or equal to 3.
Let X be a discrete random variable that takes on the values −1, 0, and 1....
Let X be a discrete random variable that takes on the values −1, 0, and 1. If E (X) = 1/2 and Var(X) = 7/16, what is the probability mass function of X?
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
1 (a) Let f(x) be the probability density function of a continuous random variable X defined...
1 (a) Let f(x) be the probability density function of a continuous random variable X defined by f(x) = b(1 - x2), -1 < x < 1, for some constant b. Determine the value of b. 1 (b) Find the distribution function F(x) of X . Enter the value of F(0.5) as the answer to this question.
Let X be a random variable with the following probability distribution: Value x of X P=Xx...
Let X be a random variable with the following probability distribution: Value x of X P=Xx 1 0.15 2 0.55 3 0.05 4 0.15 5 0.10 Find the expectation EX and variance Var X of X .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT