Question

Data yi, i = 1, . . . , n arise from a Poisson distribution with...

Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ.

If the data are

y = 17,25,25,21,13,22,23
find the posterior for λ given the above specified Gamma prior. Comment on the posterior, data, and prior means.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. Show that the posterior distribution for λ|y1,...,yn is also Gamma distributed when a Gamma(α,β) prior is used.
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. (a) Write down the likelihood for the model, up to the constant of proportionality. (b) A Gamma distribution is proposed as the prior. How can we use such a prior to include our belief that λ is 10±1 i.e. mean 10 and standard deviation 1?
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. (a) Write down the likelihood for the model, up to the constant of proportionality. (b) A Gamma distribution is proposed as the prior. How can we use such a prior to include our belief that λ is 10±1 i.e. mean 10 and standard deviation 1?
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ....
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ. Following the Bayesian paradigm, suppose we assume the prior distribution for λ is Gamma(α, β). (a) Find the posterior distribution of λ. (b) Is Gamma a conjugate prior? Explain. (c) Use software or tables to provide a 95% credible interval for λ using the 2.5th percentile and 97.5th percentile in the case where xi = 13 and n=10, assuming α = 1 andβ =...
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~...
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~ gamma(a,b) is the prior distribution for Y. a and b are also known. 1. Find the posterior distribution of Y|X=x where X=(X1, X2, ... , Xn) and x is an observed sample of size n from the distribution of X. 2. Suppose the number of people who visit a nursing home on a day is Poisson random variable and the parameter of the Poisson...
We write ? ∼ Poisson (?) if ? has the Poisson distribution with rate ? >...
We write ? ∼ Poisson (?) if ? has the Poisson distribution with rate ? > 0, that is, its p.m.f. is ?(?|?) = Poisson(?|?) = ? ^??^x /?! Assume a gamma distribution as the prior for ? where ?(?) = ? ^??(?) ? ^?-1e ^?? ?> 0 Use Bayes Rule to derive the posterior distribution ?(?|?). b. Let’s reconsider the car accidents example introduced in classed. Suppose that (X) the number of car accidents at a fixed point on...
suppose we draw a random sample of size n from a Poisson distribution with parameter λ....
suppose we draw a random sample of size n from a Poisson distribution with parameter λ. show that the maximum likelihood estimator for λ is an efficient estimator
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, ....
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, . . . Let the prior distribution for θ be f(θ) = e^−θ for θ > 0. (a) Show that the posterior distribution is a Gamma distribution. With what parameters? (b) Find the Bayes’ estimator for θ.
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t)...
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t) Find E(X) using the moment generating function 2. If X1 , X2 , X3  are independent and have means 4, 9, and 3, and variencesn3, 7, and 5. Given that Y = 2X1  -  3X2  + 4X3. find the mean of Y variance of  Y. 3. A safety engineer claims that 2 in 12 automobile accidents are due to driver fatigue. Using the formula for Binomial Distribution find the...
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a)...
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a) Prove that Pn i=1 Xi is a sufficient statistic for λ. (b) The MLE for λ in a Poisson distribution is X. Use this fact and the result of part (a) to argue that the MLE is also a sufficient statistic for λ.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT