Question

Data yi, i = 1, . . . , n arise from a Poisson distribution with...

Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ.

Show that the posterior distribution for λ|y1,...,yn is also Gamma distributed when a Gamma(α,β) prior is used.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. If the data are y = 17,25,25,21,13,22,23 find the posterior for λ given the above specified Gamma prior. Comment on the posterior, data, and prior means.
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. (a) Write down the likelihood for the model, up to the constant of proportionality. (b) A Gamma distribution is proposed as the prior. How can we use such a prior to include our belief that λ is 10±1 i.e. mean 10 and standard deviation 1?
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. (a) Write down the likelihood for the model, up to the constant of proportionality. (b) A Gamma distribution is proposed as the prior. How can we use such a prior to include our belief that λ is 10±1 i.e. mean 10 and standard deviation 1?
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ....
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ. Following the Bayesian paradigm, suppose we assume the prior distribution for λ is Gamma(α, β). (a) Find the posterior distribution of λ. (b) Is Gamma a conjugate prior? Explain. (c) Use software or tables to provide a 95% credible interval for λ using the 2.5th percentile and 97.5th percentile in the case where xi = 13 and n=10, assuming α = 1 andβ =...
For the hierarchical model Y |Λ ∼ Poisson(Λ) and Λ ∼ Gamma(α, β), find the marginal...
For the hierarchical model Y |Λ ∼ Poisson(Λ) and Λ ∼ Gamma(α, β), find the marginal distribution, mean, and variance of Y . Show that the marginal distribution of Y is a negative binomial if α is an integer. (b) Show that the three-stage model Y|N∼Binomial(N,p), N|Λ∼Poisson(Λ), andΛ∼Gamma(α,β) leads to the same marginal distribution of Y .
The special case of the gamma distribution in which α is a positive integer n is...
The special case of the gamma distribution in which α is a positive integer n is called an Erlang distribution. If we replace β by 1 λ in the expression below, f(x; α, β) = 1 βαΓ(α) xα − 1e−x/β x ≥ 0 0 otherwise the Erlang pdf is as follows. f(x; λ, n) = λ(λx)n − 1e−λx (n − 1)! x ≥ 0 0 x < 0 It can be shown that if the times between successive events are...
suppose we draw a random sample of size n from a Poisson distribution with parameter λ....
suppose we draw a random sample of size n from a Poisson distribution with parameter λ. show that the maximum likelihood estimator for λ is an efficient estimator
We write ? ∼ Poisson (?) if ? has the Poisson distribution with rate ? >...
We write ? ∼ Poisson (?) if ? has the Poisson distribution with rate ? > 0, that is, its p.m.f. is ?(?|?) = Poisson(?|?) = ? ^??^x /?! Assume a gamma distribution as the prior for ? where ?(?) = ? ^??(?) ? ^?-1e ^?? ?> 0 Use Bayes Rule to derive the posterior distribution ?(?|?). b. Let’s reconsider the car accidents example introduced in classed. Suppose that (X) the number of car accidents at a fixed point on...
5.2.12. Let the random variable Zn have a Poisson distribution with parameter μ = n. Show...
5.2.12. Let the random variable Zn have a Poisson distribution with parameter μ = n. Show that the limiting distribution of the random variable Yn =(Zn−n)/√n is normal with mean zero and variance 1. (Hint: by using the CLT, first show Zn is the sum of a random sample of size n from a Poisson random variable with mean 1.)
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~...
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~ gamma(a,b) is the prior distribution for Y. a and b are also known. 1. Find the posterior distribution of Y|X=x where X=(X1, X2, ... , Xn) and x is an observed sample of size n from the distribution of X. 2. Suppose the number of people who visit a nursing home on a day is Poisson random variable and the parameter of the Poisson...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT