The range of an SAT test is 400-1,600. On average, test-takers score 1,050 with a standard deviation of 195. What are the probabilities for the following scenarios:
i) obtaining a score of 1,400 or more
ii) obtaining a score between 1,200 and 1,400
iii) obtaining a score less than 800
Given,
= 1050 , = 195
We convert this to standard normal as
P( X < x) = P( Z < x - / )
a)
P( X >= x) = 1400 - 1050 / 195)
= P( Z >= 1.7949)
= 0.0363
b)
P( 1200 < X < 1400) = P( X < 1400) - P( X < 1200)
= P (Z < 1400 - 1050 / 195) - P( Z < 1200 - 1050 / 195)
= P( Z < 1.7949) - P( Z < 0.7692)
= 0.9637 - 0.7791
= 0.1846
c)
P( X < 800) = P( Z < 1050 - 800 / 195)
= P( Z < 1.2821)
= 0.9001
Get Answers For Free
Most questions answered within 1 hours.