Question

Let X be the mean of a random sample of size n from a N(θ, σ2)...

Let X be the mean of a random sample of size n from a N(θ, σ2) distribution,
−∞ < θ < ∞, σ2 > 0. Assume that σ2 is known. Show that X
2 − σ2
n is an
unbiased estimator of θ2 and find its efficiency.

Homework Answers

Answer #1

Hope this was helpful. Please leave back any comment.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. If ? ̅1 is the mean of a random sample of size n from a...
a. If ? ̅1 is the mean of a random sample of size n from a normal population with mean ? and variance ?1 2 and ? ̅2 is the mean of a random sample of size n from a normal population with mean ? and variance ?2 2, and the two samples are independent, show that ?? ̅1 + (1 − ?)? ̅2 where 0 ≤ ? ≤ 1 is an unbiased estimator of ?. b. Find the value...
Let X¯ be the sample mean of a random sample X1, . . . , Xn...
Let X¯ be the sample mean of a random sample X1, . . . , Xn from the exponential distribution, Exp(θ), with density function f(x) = (1/θ) exp{−x/θ}, x > 0. Show that X¯ is an unbiased point estimator of θ.
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn...
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn be the maximum of X1, X2, ..., Xn. (a) Give the pdf of Yn. (b) Find the mean of Yn. (c) One estimator of θ that has been proposed is Yn. You may note from your answer to part (b) that Yn is a biased estimator of θ. However, cYn is unbiased for some constant c. Determine c. (d) Find the variance of cYn,...
Let Y1, Y2, …, Yndenote a random sample of size n from a population whose density...
Let Y1, Y2, …, Yndenote a random sample of size n from a population whose density is given by f(y) = 5y^4/theta^5 0<y<theta 0 otherwise a) Is an unbiased estimator of θ? b) Find the MSE of Y bar c) Find a function of that is an unbiased estimator of θ.
Let we have a sample of 100 numbers from exponential distribution with parameter θ f(x, θ)...
Let we have a sample of 100 numbers from exponential distribution with parameter θ f(x, θ) = θ e- θx      , 0 < x. Find MLE of parameter θ. Is it unbiased estimator? Find unbiased estimator of parameter θ.
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...
Let Y1,Y2,Y3,...,Yn denote a random sample from a Poisson probability distribution. (a) Show that sample mean,...
Let Y1,Y2,Y3,...,Yn denote a random sample from a Poisson probability distribution. (a) Show that sample mean, ˆ θ1 = ¯ Y and the sample variance, ˆ θ2 = S2 are both unbiased estimators of θ. (b) Calculate relative efficiency of the two estimators in (a). Based on your calculation, Which of the two estimators in 3a would you select as a better estimator?
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),···...
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),··· ,Y(n) denote the order statistics of the sample. (a) Find the constant c so that cY(1) is an unbiased estimator of θ. (b) Find the sufficient statistic for θ and MVUE for θ.
Let Xl, n be a random sample from a gamma distribution with parameters a = 2...
Let Xl, n be a random sample from a gamma distribution with parameters a = 2 and p = 20.      a)         Find an estimator , using the method of maximum likelihood b) Is the estimator obtained in part a) is unbiased and consistent estimator for the parameter 0? c) Using the factorization theorem, show that the estimator found in part a) is a sufficient estimator of 0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT