Question

Data yi, i = 1, . . . , n arise from a Poisson distribution with...

Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ.

  1. (a) Write down the likelihood for the model, up to the constant of proportionality.

  2. (b) A Gamma distribution is proposed as the prior. How can we use such a prior to include our belief that λ is 10±1 i.e. mean 10 and standard deviation 1?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. (a) Write down the likelihood for the model, up to the constant of proportionality. (b) A Gamma distribution is proposed as the prior. How can we use such a prior to include our belief that λ is 10±1 i.e. mean 10 and standard deviation 1?
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. Show that the posterior distribution for λ|y1,...,yn is also Gamma distributed when a Gamma(α,β) prior is used.
Data yi, i = 1, . . . , n arise from a Poisson distribution with...
Data yi, i = 1, . . . , n arise from a Poisson distribution with rate parameter λ. If the data are y = 17,25,25,21,13,22,23 find the posterior for λ given the above specified Gamma prior. Comment on the posterior, data, and prior means.
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ....
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ. Following the Bayesian paradigm, suppose we assume the prior distribution for λ is Gamma(α, β). (a) Find the posterior distribution of λ. (b) Is Gamma a conjugate prior? Explain. (c) Use software or tables to provide a 95% credible interval for λ using the 2.5th percentile and 97.5th percentile in the case where xi = 13 and n=10, assuming α = 1 andβ =...
suppose we draw a random sample of size n from a Poisson distribution with parameter λ....
suppose we draw a random sample of size n from a Poisson distribution with parameter λ. show that the maximum likelihood estimator for λ is an efficient estimator
We write ? ∼ Poisson (?) if ? has the Poisson distribution with rate ? >...
We write ? ∼ Poisson (?) if ? has the Poisson distribution with rate ? > 0, that is, its p.m.f. is ?(?|?) = Poisson(?|?) = ? ^??^x /?! Assume a gamma distribution as the prior for ? where ?(?) = ? ^??(?) ? ^?-1e ^?? ?> 0 Use Bayes Rule to derive the posterior distribution ?(?|?). b. Let’s reconsider the car accidents example introduced in classed. Suppose that (X) the number of car accidents at a fixed point on...
The special case of the gamma distribution in which α is a positive integer n is...
The special case of the gamma distribution in which α is a positive integer n is called an Erlang distribution. If we replace β by 1 λ in the expression below, f(x; α, β) = 1 βαΓ(α) xα − 1e−x/β x ≥ 0 0 otherwise the Erlang pdf is as follows. f(x; λ, n) = λ(λx)n − 1e−λx (n − 1)! x ≥ 0 0 x < 0 It can be shown that if the times between successive events are...
1. Given β = XT 1×nAn×nXn×1, show that the gradient of β with respect to X...
1. Given β = XT 1×nAn×nXn×1, show that the gradient of β with respect to X has the following form: ∇β = X T (A + A T ). Also, simplify the above result when A is symmetric. (Hint: β can be written as Pn j=1 Pn i=1 aijxixj ). 2. In this problem, we consider a probabilistic view of linear regression y (i) = θ T x (i)+ (i) , i = 1, . . . , n, which...
I. Solve the following problem: For the following data: 1, 1, 2, 2, 3, 3, 3,...
I. Solve the following problem: For the following data: 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6 n = 12 b) Calculate 1) the average or average 2) quartile-1 3) quartile-2 or medium 4) quartile-3 5) Draw box diagram (Box & Wisker) II. PROBABILITY 1. Answer the questions using the following contingency table, which collects the results of a study to 400 customers of a store where you want to analyze the payment method. _______B__________BC_____ A...
1. Alpha is the probability of committing a Type I Error if…                a. The null distribution...
1. Alpha is the probability of committing a Type I Error if…                a. The null distribution is true b. The null distribution is false c. n is larger than 30 d. the alternative distribution is true 2. We are more likely to reject the null as… a. Alpha goes down b. n goes down c. variation goes down d. the difference between sample and population mean goes down 3. Which of the following is true of a one-tailed test? a....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT