Question

b) Find the least integer n such that f(x) is O(x^n) for f(x) = (x^4+x^2+1)/( x^3...

b) Find the least integer n such that f(x) is O(x^n) for f(x) = (x^4+x^2+1)/( x^3 +1)

Homework Answers

Answer #1

thanks a lot

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find f o g and g o f f(x)= 8/(x^2-1) , g(x) = x^3 +1 also...
Find f o g and g o f f(x)= 8/(x^2-1) , g(x) = x^3 +1 also find domain of f, g, f o g , and g o f
1. Find f''(x) F(x)= (x^2+2)^9 F''(x)= 2. Find t^(4)(n) for the function t(n)= 2n^-1/2+7n^3/2 t^(4)(n) =...
1. Find f''(x) F(x)= (x^2+2)^9 F''(x)= 2. Find t^(4)(n) for the function t(n)= 2n^-1/2+7n^3/2 t^(4)(n) = (Type an expression using n as the variable. Simplify your answer)
True or False...Provide your reasons If f(n) =o(g(n)), then f(n)=O(g(n)) If f(n) =O(g(n)), then f(n) ≤...
True or False...Provide your reasons If f(n) =o(g(n)), then f(n)=O(g(n)) If f(n) =O(g(n)), then f(n) ≤ g(n) 3.  If 1<a=O(na), then f(n)=O(nb) 4. A and B are two sorting algorithms. If A is O(n2) and B is O(n), then for an input of X integers, B can sort it faster than A.
For f(x) = x^2+6 and g(x) = x^2-5 find the following functions. a.) (f o g)(x)...
For f(x) = x^2+6 and g(x) = x^2-5 find the following functions. a.) (f o g)(x) b.) (g o f) (x) c.) (f o g) (4) d.) (g o f) (4)
f(x) = 3 / [x^2 +1] ; g(x) = x + 1.   2a: f o g(x)...
f(x) = 3 / [x^2 +1] ; g(x) = x + 1.   2a: f o g(x) = ?   2b: g o f(x) = ?   2c: Domain of f ?   2d: Domain of g ?   2e: Domain of f o g ?   2f: Domain of g o f ?
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate...
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate f '(x) at x=3 rounded to 2 decimal places. f '(3)= 3. Let f(x)=(x^3+4x+2)(160−5x) find f ′(x). f '(x)= 4. Find the derivative of the function f(x)=√x−5/x^4 f '(x)= 5. Find the derivative of the function f(x)=2x−5/3x−3 f '(x)= 6. Find the derivative of the function g(x)=(x^4−5x^2+5x+4)(x^3−4x^2−1). You do not have to simplify your answer. g '(x)= 7. Let f(x)=(−x^2+x+3)^5 a. Find the derivative....
Find the radius and interval of convergence of 1.(a) ∞∑n=0 ((((−1)^n)*n)/(4^n))*(x−3)^n (b)∞∑n=0 n!(x−2)^n
Find the radius and interval of convergence of 1.(a) ∞∑n=0 ((((−1)^n)*n)/(4^n))*(x−3)^n (b)∞∑n=0 n!(x−2)^n
1) Find f’(x), given f(x) = x^1/3 (lnx) 2)Find f(x), given f’’(x) = 3 , f’(0)...
1) Find f’(x), given f(x) = x^1/3 (lnx) 2)Find f(x), given f’’(x) = 3 , f’(0) =4 f(0) = -5 3) A ball is thrown upward with an initial velocity = 96 What is the maximum height it reaches? 4) Find the area bounded by f(x) = x^2 +1 , g(x) = x +3
1. Find and interpret f'(−2) f(x)=−2x^2−3x+4 f'(-2)= 2. Find and interpret f'(1)and f′'(1) f(x)= 2/x f'(1)=...
1. Find and interpret f'(−2) f(x)=−2x^2−3x+4 f'(-2)= 2. Find and interpret f'(1)and f′'(1) f(x)= 2/x f'(1)= f''(1)= 3. Find and interpret f'(1)and f′'(1) f(x)=−2√x f'(1)= f''(1)= 4. If f(x)=(2x−5)(3x+1) then f'(1)= the values of x for which f(x)=0 are _ , _ the values of x for which f'(x)=0 are
Show that 1^3 + 2^3 + 3^3 + ... + n^3 is O(n^4). The proof is
Show that 1^3 + 2^3 + 3^3 + ... + n^3 is O(n^4). The proof is
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT