Question

Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf...

Can you give me a simple interpretation of this output?

Call:

lm(formula = NOCRF ~ Mktrf + HML + SMB + SMB2)

Residuals:

     Min       1Q   Median       3Q      Max

-10.1560 -0.6880 -0.0254 0.6660 21.9700

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.01163    0.02800 -0.415    0.678   

Mktrf        1.25614    0.02389 53.540 <2e-16 ***

HML          2.01719    0.04238 47.602   <2e-16 ***

SMB         -0.05150    0.04769 -1.080    0.280   

SMB2         0.03180    0.03545   0.897    0.372

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.585 on 3848 degrees of freedom

Multiple R-squared: 0.6676, Adjusted R-squared: 0.6672

F-statistic: 1882 on 4 and 3748 DF, p-value: < 2.2e-16

Homework Answers

Answer #1

The p-value of Mktrf and HML are less than 0.05 while the p-value of SMB and SMB2 are greater than 0.05.

So on the basis of p-value, we have only two significant variables whose parameters (coefficient) in the equation are not zero while SMB and SMB2 are insignificant variables because their coefficient does not affect the response variable NOCRF, hence their affect are almost zero. So in this equation of multiple linear regression model we have only significant variables that could be added in the equation.

The R squared is 0.6676 it shows that the model is a good fir but since it is not 1 or close to 1, so we have chance to add more variables so that R squared can be increased upto 1. If it is 1, model is best fit.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy)...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy) Residuals:     Min      1Q Median      3Q     Max -258.24 -105.23   23.29 116.06 174.73 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) -240.8429    36.6769 -6.567 1.46e-10 *** launch_speed    4.8800     0.4022 12.134 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 122.4 on 438 degrees of freedom Multiple R-squared: 0.2516, Adjusted R-squared: 0.2499 F-statistic:...
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths +...
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths + dis_coast + API.2011 + dis_fwy + dis_down + Pool, data = Training) Residuals: Min 1Q Median 3Q Max -2.17695 -0.23519 -0.00112 0.26471 1.02810 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.630e+00 2.017e-01 47.756 < 2e-16 *** Lot.Size -2.107e-06 3.161e-07 -6.666 4.78e-11 *** Square.Feet 2.026e-04 3.021e-05 6.705 3.71e-11 *** Num.Baths 6.406e-02 2.629e-02 2.437 0.015031 * dis_coast -1.827e-05 6.881e-06 -2.655 0.008077 ** API.2011 3.459e-03 2.356e-04...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the summary output for this simple linear regression model. > Model2 <- lm(LifeExpect2017~ AverageDailyPM2.5) > summary(Model2) Call: lm(formula = LifeExpect2017 ~ AverageDailyPM2.5) Residuals: Min 1Q Median 3Q Max -17.1094 -1.7516 0.0592 1.7208 18.4604 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 81.6278 0.2479 329.23 <2e-16 *** AverageDailyPM2.5 -0.4615 0.0267 -17.29 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data = Lab5, na.action = na.exclude) Residuals: Min 1Q Median 3Q Max -582.66 -274.75 13.53 273.92 589.06 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 385.362 77.360 4.981 8.72e-07 *** fin_loss 3.248 1.523 2.133 0.0334 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 316.6 on 498 degrees of freedom Multiple R-squared: 0.009052,   Adjusted R-squared:...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and domestic vs foreign manufacturer to predict mileage: ------------------------------------------------------------------------------------------------------ > summary(lm(highwaympg~displacement+hp+weight+domestic)) Call: lm(formula = highwaympg ~ displacement + hp + weight + domestic) Residuals:     Min      1Q  Median      3Q     Max -6.9530 -1.6997 -0.1708 1.6452 11.4028 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 53.849794   2.090657 25.757 < 2e-16 *** displacement 1.460873   0.748837   1.951   0.0543 . hp           -0.009802   0.011356 -0.863   0.3904    weight       -0.008700   0.001094 -7.951 6.23e-12 *** domestic     -0.939918   0.762175 -1.233   0.2208    ---...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of dollars along with the sales. The experiment has been repeated 200 times with different budgets and the observed sales have been recorded. The simple linear regression model was fitted: ## ## Call: ## lm(formula = sales ~ youtube, data = marketing) ## ## Residuals: ## Min 1Q Median 3Q Max ## -10.06 -2.35 -0.23 2.48 8.65 ## ## Coefficients: ## Estimate Std. Error t...
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:         &nbs
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 1.311e+02 2.219e+02   0.591   0.5550    debt         1.283e-01 3.288e-01   0.390   0.6966    sales        2.942e-01 1.366e-01   2.154   0.0321 * income       1.546e+01 2.697e+00   5.730 2.42e-08 *** assets      -2.390e-05 4.839e-03 -0.005   0.9961    seo          2.973e+02 2.627e+02   1.132   0.2587    --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2019 on 303 degrees of freedom Multiple R-squared: 0.258,   Adjusted...
Below is the R output of a study of ACT scores for the first year of...
Below is the R output of a study of ACT scores for the first year of college students. This helps to see if the test scores can predict a GPA. Simply put, this ACT helps to be an explanatory var and GPA would be a response var. Call: Im(formula = GPA ~ ACT, data = gpadata) Residuals: Min 1Q Median 3Q Max -2.74004 -0.33827 0.04062 0.44064 1.22737 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.11405 .32089 6.588 1.3e-09 ***...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT
Active Questions
  • GPS Watches Please submit your finalized marketing plan. Conduct a final proof read.
    asked 12 minutes ago
  • A business PhD student who lived on a naval base, looked at prices of items at...
    asked 22 minutes ago
  • 1 Consider diversity, interpersonal communication, & technology in the workplace & explain the roles they may...
    asked 30 minutes ago
  • 1 Explain how "triggers to imbalance" in work-life balance influence the imbalance & how they can...
    asked 44 minutes ago
  • Spaulding is the leading maker for basketballs in the US. Spaulding prides itself on the quality...
    asked 56 minutes ago
  • Select True or False for the following statements about Heisenberg's Uncertainty Principle.  True False  It is possible to...
    asked 1 hour ago
  • Explain why, to maximize entropy, ice must remain at 0 degrees Celsius until all of it...
    asked 1 hour ago
  • THE CODE MUST BE PYTHON superHeroes = {   "MoleculeMan": {       "age": 29,       "secretIdentity": "Dan Jukes",       "superpowers":...
    asked 1 hour ago
  • Which of the four complexes of the mitochondrial electron transfer chain does not directly contribute to...
    asked 1 hour ago
  • Police response time to an emergency call is the difference between the time the call is...
    asked 2 hours ago
  • A space vehicle is traveling at 5030 km/h relative to Earth when the exhausted rocket motor...
    asked 2 hours ago
  • You have 3 parallel production lines which supply the assembly line. Acceptable quality percentage(AQP) for lines...
    asked 2 hours ago