Question

1. Let fX(x;μ,σ2) denote the probability density function of a normally distributed variable X with mean...

1. Let fX(x;μ,σ2) denote the probability density function of a normally distributed variable X with mean μ and variance σ2.

a. What value of x maximizes this function?

b. What is the maximum value of fX(x;μ,σ2)?

Homework Answers

Answer #1

The probability density function of a normally distributed random variable X with mean and variance is

a) It is clear that as the values of x increases or decreases the value of decreases. The maximum value occurs at

As at .

So, the required value of x which maximizes this function is

b) Put in we get the required maximum value as

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a random variable with probability density function fX (x) = I (0, 1)...
Let X be a random variable with probability density function fX (x) = I (0, 1) (x). Determine the probability density function of Y = 3X + 1 and the density function of probability of Z = - log (X).
Suppose X is a normally distributed random variable with mean μ = 10 and variance σ2...
Suppose X is a normally distributed random variable with mean μ = 10 and variance σ2 = 4. Find P(9 < X < 12).
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x),...
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x), 0<x<2 1/4(x-2), 2<=x<4 0, otherwise. Let Y=|X-3|. Compute the probability density function of Y.
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e^−x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1,...
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1, 0 otherwise}. a) What is the value of c? b) What is the cumulative distribution function of X? c) Compute E(X) and Var(X).
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4...
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4 − x ^2 ) for |x| ≤ 2 and zero otherwise. Evaluate the constant c, and compute the cumulative distribution function. Let X be the random variable. Compute the following probabilities. a. Prob(X < 1) b. Prob(X > 1/2) c. Prob(X < 1|X > 1/2).
Let X denote a random variable with probability density function a. FInd the moment generating function...
Let X denote a random variable with probability density function a. FInd the moment generating function of X b If Y = 2^x, find the mean E(Y) c Show that moments E(X ^n) where n=1,4 is given by:
Let X be normally distributed with mean 3 and variance σ2 . Let Y = 3X...
Let X be normally distributed with mean 3 and variance σ2 . Let Y = 3X + 7. A) Find the mean, variance, and PDF of Y. (The other listed solution does not have the PDF.) B) Assuming P(Y ≤ 17) = .6331, find σ2 . C) Assuming σ2 = 1, find the PDF of W = (|Y|)1/2 + 1.
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { e −x−y , 0 < x, y < ∞ 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y .
Let X be a random variable with a mean distribution of mean μ = 70 and...
Let X be a random variable with a mean distribution of mean μ = 70 and variance σ2 = 15. d) Imagine a symmetric interval around the mean (μ ± c) of the distribution described above. Find the value of c such that the probability is about 0.2 that X is in this interval. Please explain how to get the answer