Question

Suppose that the probability density function for the random variable X is given by ??(?) =...

Suppose that the probability density function for the random variable X is given by ??(?) = 1/5000 (10? 3 − ? 4 ) for 0 ≤ ? ≤ 10

What is ?(?)?

What is ?????(?)

Provide the cumulative distribution function for the random variable X.

Homework Answers

Answer #1

I HOPE I WAS HELPFUL AND HAVE CLEARED YOUR DOUBTS.

THANKYOU

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute...
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute the value of c. (b) What is the probability that 2 < X ≤ 3? (c) What is the probability that X > 0? (d) What is the probability that ∣X∣ < 1? (e) What is the cumulative distribution function of X? (f) Compute the density function of X3 . (g) Compute the density function of X2 .
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4...
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4 − x ^2 ) for |x| ≤ 2 and zero otherwise. Evaluate the constant c, and compute the cumulative distribution function. Let X be the random variable. Compute the following probabilities. a. Prob(X < 1) b. Prob(X > 1/2) c. Prob(X < 1|X > 1/2).
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
For probability density function of a random variable X, P(X < a) can also be described...
For probability density function of a random variable X, P(X < a) can also be described as: F(a), where F(X) is the cumulative distribution function. 1- F(a) where F(X) is the cumulative distribution function. The area under the curve to the right of a. The area under the curve between 0 and a.
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
- Determine the cumulative distribution function for the random variable with probability density function ?(?) =...
- Determine the cumulative distribution function for the random variable with probability density function ?(?) = 1 − 0.5? for 0 < ? < 2 millimeters. - Determine the mean and variance of the random variable with probability density function
Suppose that the probability mass function for a discrete random variable X is given by p(x)...
Suppose that the probability mass function for a discrete random variable X is given by p(x) = c x, x = 1, 2, ... , 9. Find the value of the cdf (cumulative distribution function) F(x) for 7 ≤ x < 8.
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x),...
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x), 0<x<2 1/4(x-2), 2<=x<4 0, otherwise. Let Y=|X-3|. Compute the probability density function of Y.
1. f is a probability density function for the random variable X defined on the given...
1. f is a probability density function for the random variable X defined on the given interval. Find the indicated probabilities. f(x) = 1/36(9 − x2);  [−3, 3] (a)    P(−1 ≤ X ≤ 1)(9 − x2);  [−3, 3] (b)    P(X ≤ 0) (c)    P(X > −1) (d)    P(X = 0) 2. Find the value of the constant k such that the function is a probability density function on the indicated interval. f(x) = kx2;  [0, 3] k=