Question

Consider a continuous random variable X with the probability density function f X ( x )...

Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a continuous random variable with the probability density function f(x) = C x,...
Let X be a continuous random variable with the probability density function f(x) = C x, 6 ≤ x ≤ 25, zero otherwise. a. Find the value of C that would make f(x) a valid probability density function. Enter a fraction (e.g. 2/5): C = b. Find the probability P(X > 16). Give your answer to 4 decimal places. c. Find the mean of the probability distribution of X. Give your answer to 4 decimal places. d. Find the median...
Probability density function of the continuous random variable X is given by f(x) = ( ce...
Probability density function of the continuous random variable X is given by f(x) = ( ce −1 8 x for x ≥ 0 0 elsewhere (a) Determine the value of the constant c. (b) Find P(X ≤ 36). (c) Determine k such that P(X > k) = e −2 .
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
1 (a) Let f(x) be the probability density function of a continuous random variable X defined...
1 (a) Let f(x) be the probability density function of a continuous random variable X defined by f(x) = b(1 - x2), -1 < x < 1, for some constant b. Determine the value of b. 1 (b) Find the distribution function F(x) of X . Enter the value of F(0.5) as the answer to this question.
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
If f(x) is a probability density function of a continuous random variable, then f(x)=? a-0 b-undefined...
If f(x) is a probability density function of a continuous random variable, then f(x)=? a-0 b-undefined c-infinity d-1
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when...
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when x < 0 = x2              when 0 ≤ x ≤ 1 = 1               when x > 1 Compute P(1/4 < X ≤ 1/2) What is f(x), the probability density function of X? Compute E[X]
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln 2 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
1. Consider a continuous random variable X with a probability density function that is normal with...
1. Consider a continuous random variable X with a probability density function that is normal with mean 0 and standard deviation What is the probability that X = 0? Explain your answer. 2. Is each outcome of the roll of a fair die an independent Bernoulli trial? Why or why not?