Question

We roll three fair six-sided dice. (a) What is the probability that at least two of...

We roll three fair six-sided dice.
(a) What is the probability that at least two of the dice land on a number greater than 4?

(b) What is the probability that we roll a sum of at least 15?
(c) Now we roll three fair dice n times. How large need n be in order to guarantee a better
than 50% chance of rolling a sum of at least 15, at least once?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider rolling two fair six-sided dice. a) Given that the roll resulted in sum of 8,...
Consider rolling two fair six-sided dice. a) Given that the roll resulted in sum of 8, find the conditional probability that first die roll is 6. b) Given that the roll resulted in sum of 4 or less, find the conditional probability that doubles are rolled. c) Given that the two dice land on different numbers, find the conditional probability that at least one die is a 6.
Rolling Snake Eyes We roll two six-sided dice d1 and d2. What is the probability that...
Rolling Snake Eyes We roll two six-sided dice d1 and d2. What is the probability that we roll two ones. (i.e., the probability that d1=d2=1). We roll two six-sided dice d1 and d2 and at least one of the dice comes up as a one. What is the (conditional) probability that we roll two ones. We roll two six-sided dice d1 and d2 and at least one of the dice comes up as a one. What is the (conditional) probability...
You roll two fair six-sided dice. What is the probability that the sum of the two...
You roll two fair six-sided dice. What is the probability that the sum of the two dice values is exactly five? Be sure to count all possible outcomes. (Hint: The event space has 36 distinct outcomes).
Consider an experiment where we roll 7 fair 6-sided dice simultaneously (the results of the dice...
Consider an experiment where we roll 7 fair 6-sided dice simultaneously (the results of the dice are independent from each other). (a) What is the probability that exactly 3 of the dice are greater than or equal to 5? (b) Suppose now that each of the 7 6-sided dice are weighted the same such that the probability of rolling a 6 is 0.5, and every other side that is not a 6 has equal probability of being rolled. If we...
Suppose that you roll 117 fair six-sided dice. Find the probability that the sum of the...
Suppose that you roll 117 fair six-sided dice. Find the probability that the sum of the dice is less than 400. (Round your answers to four decimal places.)
Four fair six sided dice are rolled. Given that at least two of the dice land...
Four fair six sided dice are rolled. Given that at least two of the dice land on an odd number, what is the probability that the sum of the result of all four dice is equal to 14?
If you roll four (six-sided) dice, what is the probability that at least one dice will...
If you roll four (six-sided) dice, what is the probability that at least one dice will be different from the other three? Leave answer as a fraction
Suppose we roll a fair six-sided die and sum the values obtained on each roll, stopping...
Suppose we roll a fair six-sided die and sum the values obtained on each roll, stopping once our sum exceeds 376. Approximate the probability that at least 100 rolls are needed to get this sum. Probability =
roll a pair of fair dice and at least one of the dice is a six....
roll a pair of fair dice and at least one of the dice is a six. without any further information to go on, what is the conditional probability that the sum of the dice is 8? Is the event that “sum is 8” independent from the event that “at least one of the dice is a six”?
Suppose you roll a pair of six-sided dice. What is the probability that the sum of...
Suppose you roll a pair of six-sided dice. What is the probability that the sum of the numbers on your dice is at least 9?