Question

Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains...

Box 1 contains 4 red balls, 5 green balls and 1 yellow ball.

Box 2 contains 3 red balls, 5 green balls and 2 yellow balls.

Box 3 contains 2 red balls, 5 green balls and 3 yellow balls.

Box 4 contains 1 red ball, 5 green balls and 4 yellow balls.

Which of the following variables have a binomial distribution?
(I) Randomly select three balls from Box 1 with replacement. X = number of red balls selected

(II) Randomly select one ball from each of the four boxes. X = number of yellow balls selected

(III) Randomly select three balls from Box 1 without replacement. X = number of red balls selected

(IV) Randomly select one ball from each of the four boxes. X = number of green balls selected

Homework Answers

Answer #1

(I)

Since ball are drawn with replacement so probability of getting a red ball is p = 4/10 each time.

It is binomial distrbution with parameters n=3 and p= 0.40.

(II)

Since probability of getting yellow ball from each box is different so it is not binomial.

(iii)

Since ball are drawn with replacement so it is not binomial. In this case probability of getting a red ball is not same each time.

(iv)

The probability of getting green ball from each is 5/10 = 0.20

So here X has binomial distribution with parameter n = 1+1+1+1= 4 and p=0.20.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box contains 4 red balls, 3 yellow balls, and 3 green balls. You will reach...
A box contains 4 red balls, 3 yellow balls, and 3 green balls. You will reach into the box and blindly select a ball, take it out, and then place it to one side. You will then repeat the experiment, without putting the first ball back. Calculate the probability that the two balls you selected include a yellow one and a green one.
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls...
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls for a total of 13 balls. If 5 balls are randomly selected without replacement, what is the probability of selecting at least two red balls given that at least one yellow ball is selected? Please show all steps.
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen...
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement. Define the following events: A:{ One of the balls is yellow } B:{ At least one ball is red } C:{ Both balls are green } D:{ Both balls are of the same color } Find the following conditional probabilities: P(B\Ac)= P(D\B)=
A basket contains 5 Red balls, 1 Blue ball and 1 Green ball. Three balls were...
A basket contains 5 Red balls, 1 Blue ball and 1 Green ball. Three balls were selected randomly without replacement. Find the probability that the three selected balls contain at least two red balls.
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen...
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement. Define the following events: A: \{ One of the balls is yellow \} B: \{ At least one ball is red \} C: \{ Both balls are green \} D: \{ Both balls are of the same color \} Find the following conditional probabilities: (a) P(B|D^c) (b) P(D|C) (c) P(A|B)
Box I contains 7 red and 3 black balls; Box II contains 4 red and 5...
Box I contains 7 red and 3 black balls; Box II contains 4 red and 5 black balls. After a randomly selected ball is transferred from Box I to Box II, 2 balls are drawn from Box II without replacement. Given that the two balls are red, what is the probability a black ball was transferred?
2. Box A contains 10 red balls, and 15 green balls. Box B contains 12 red...
2. Box A contains 10 red balls, and 15 green balls. Box B contains 12 red balls and 17 balls green. A ball is taken randomly from box A and then returned to box B. From box B a random ball is drawn. a) Determine the chance that two green balls are taken. b) Determine the chance that 1 red ball is drawn and 1 green ball is taken
  1. You have three boxes labelled Box #1, Box #2, and Box #3.   Initially each box contains...
  1. You have three boxes labelled Box #1, Box #2, and Box #3.   Initially each box contains 4 red balls and 4 green balls.  One ball is randomly selected from Box #1 and placed in Box #2 Then one ball is randomly selected from Box #2 and placed in Box #3. Then one ball is randomly selected from Box #3 and placed in Box #1.  At the conclusion of this process, what is the probability that that each box has the same  number of...
There are six red balls and three green balls in a box. If we randomly select...
There are six red balls and three green balls in a box. If we randomly select 3 balls from the box with replacement, and let X be number of green balls selected. So, X ~ Binomial [n=3, p=1/3] Use R to find the following probabilities and answers. A) How likely do we observe exactly one green ball? B) Find P[X<=2]. C) Find the second Decile (the 20th percentile). D) Generating 30 random observations from Bin(n,p) distribution, where n=3 & p=1/3....
There are six red balls and three green balls in a box. If we randomly select...
There are six red balls and three green balls in a box. If we randomly select 3 balls from the box with replacement, and let X be number of green balls selected. So, X ~ Binomial [n=3, p=1/3] Use R to find the following probabilities and answers. A) How likely do we observe exactly one green ball? B) Find P[X<=2]. C) Find the second Decile (the 20th percentile). D) Generating 30 random observations from Bin(n,p) distribution, where n=3 & p=1/3....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT