1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form
lambda?I.
[[4.5,0][0,4.5]] [[5.5,0][0,5.5]] [[4,0][0,4]] [[3.5,0][0,3.5]] [[5,0][0,5]] [[1.5,0][0,1.5]]
2. Find the orthogonal projection of the matrix
[[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace
0.
[[-1,3][3,1]] [[1.5,1][1,-1.5]] [[0,4][4,0]] [[3,3.5][3.5,-3]] [[0,1.5][1.5,0]] [[-2,1.5][1.5,2]] [[0.5,4.5][4.5,-0.5]] [[-1,6][6,1]] [[0,3.5][3.5,0]] [[-1.5,3.5][3.5,1.5]]
3. Find the orthogonal projection of the matrix
[[1,5][1,2]] onto the space of anti-symmetric 2x2
matrices.
[[0,-1] [1,0]] [[0,2] [-2,0]] [[0,-1.5]
[1.5,0]] [[0,2.5] [-2.5,0]] [[0,0]
[0,0]] [[0,-0.5] [0.5,0]] [[0,1] [-1,0]]
[[0,1.5] [-1.5,0]] [[0,-2.5]
[2.5,0]] [[0,0.5] [-0.5,0]]
4. Let p be the orthogonal projection of
u=[40,-9,91]T onto the...
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent
variables.
Let Z =...
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent
variables.
Let Z = X+Y, and joint density of Y and Z is expressed as f(y,
z) = g(z|y)*h(y)
g(z|y) is conditional distribution of Z given y, and h(y) is
density of Y
how can i get f(y, z)?
Let V be a finite dimensional vector space over R with an inner
product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner
product 〈x, y〉 ∈ R for x, y ∈ V .
(a) (3points) Let λ∈R with λ>0. Show that
〈x,y〉′ = λ〈x,y〉, for x,y ∈ V,
(b) (2 points) Let T : V → V be a linear operator, such that
〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V.
Show that T is one-to-one.
(c) (2 points) Recall that the norm of a vector x ∈ V...