Question

Problem 3.2 Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x...

Problem 3.2

Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x ∼ N(0,In). (a) Let σ > 0 be a positive number. Find the distribution of σx. (b) Let u = Hx and v = (I −H)x and find the joint distribution of (u,v). 1 (c) Someone claims that u and v are independent. Is that true? (d) Let µ ∈ Im(H). Show that Hµ = µ. (e) Assume that 1 ∈ Im(H) and find the distribution of 1THx. Here, 1 = (1,...,1) ∈Rn is the vector of all ones.

Homework Answers

Answer #1

solution:-

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector)....
Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector). Show that the following are equivalent. (a) E^2 = E = E^T (T means transpose). (b) (u − uE) · (vE) = 0 for all u, v ∈ Rn. (c) projU(v) = vE for all v ∈ Rn.
Let A be an m×n matrix, x a vector in Rn, and b a vector in...
Let A be an m×n matrix, x a vector in Rn, and b a vector in Rm. Show that if x1 in Rn is a solution to Ax=b and x2 is a solution to Ax=⃗0, then x1 +x2 is a solution to Ax=b.
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2)....
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2). Please derive the joint distribution of (U, V ) by using the Jacobian matrix method.
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent variables. Let Z =...
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent variables. Let Z = X+Y, and joint density of Y and Z is expressed as f(y, z) = g(z|y)*h(y) g(z|y) is conditional distribution of Z given y, and h(y) is density of Y how can i get f(y, z)?
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT