Question

You test the hypotheses H0: μ = 100 vs. H1: μ > 100, and you reject...

You test the hypotheses H0: μ = 100 vs. H1: μ > 100, and you reject H0 at α = .05. Is this enough information to know if you will reject at α = .10? Explain.

Homework Answers

Answer #1

we have rejected the null hypothesis at 0.05.

so, we have,p value < 0.05

[ as we know that , we can reject the null hypothesis , if p value < ]

decision for =0.10 is :-

p value < 0.05 << 0.10 [ which is obvious, that the p value which is less than 0.05 will be less than 0.10 ]

so, there is enough information reject the null hypothesis at 0.10 level of significance.

***in case of doubt, comment below. And if u liked the solution, please like.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. If for the test of H0: μ = μ h   vs. Ha: μ ≠ μ...
a. If for the test of H0: μ = μ h   vs. Ha: μ ≠ μ h the null hypothesis cannot be rejected at α = .05, then it ______ be rejected at α = .10 for the test of H0: μ = μ h   vs. Ha: μ > μ h. A. might B. must always C. will never ​​​​​​​b. If the 80% confidence interval for μ contains the value μ h, then the P-value for the test of H0:...
1. a) For a test of H0 : μ = μ0 vs. H1 : μ ≠...
1. a) For a test of H0 : μ = μ0 vs. H1 : μ ≠ μ0, the value of the test statistic z obs is -1.46. What is the p-value of the hypothesis test? (Express your answer as a decimal rounded to three decimal places.) I got 0.101 b) Which of the following is a valid alternative hypothesis for a one-sided hypothesis test about a population mean μ? a μ ≠ 5.4 b μ = 3.8 c μ <...
Given the following hypotheses: H0: μ = 100 H1: μ ≠ 100 A random sample of...
Given the following hypotheses: H0: μ = 100 H1: μ ≠ 100 A random sample of six resulted in the following values: 118 105 112 119 105 111 Using the 0.05 significance level, can we conclude that the mean is different from 100? a. What is the decision rule? (Negative answer should be indicated by a minus sign. Round the final answers to 3 decimal places.) Reject H0: μ = 100 and accept H1: μ ≠ 100 when the test...
Suppose that we are to conduct the following hypothesis test: H0: μ=990 H1:μ>990 Suppose that you...
Suppose that we are to conduct the following hypothesis test: H0: μ=990 H1:μ>990 Suppose that you also know that σ=220, n=100, x¯=1031.8, and take α=0.01. Draw the sampling distribution, and use it to determine each of the following: A. The value of the standardized test statistic: Note: For the next part, your answer should use interval notation. An answer of the form (−∞,a) is expressed (-infty, a), an answer of the form (b,∞) is expressed (b, infty), and an answer...
Suppose that we are to conduct the following hypothesis test: H0: μ = 1080 ,  H1:μ >1080...
Suppose that we are to conduct the following hypothesis test: H0: μ = 1080 ,  H1:μ >1080 Suppose that you also know that σ=240, n=100, x¯=1125.6, and take α=0.005. Draw the sampling distribution, and use it to determine each of the following: A. The value of the standardized test statistic: 1.9 Note: For the next part, your answer should use interval notation. An answer of the form (−∞,a) is expressed (-infty, a), an answer of the form (b,∞) is expressed (b,...
Test H0: β2 = 1 vs. H1: β2 >1 if the following information from a simple...
Test H0: β2 = 1 vs. H1: β2 >1 if the following information from a simple regression is given: b2 = 1.39, sb2= 0.18, and n = 30. A. Reject H0 for α = 0.005 B. Reject H0 for α = 0.025 C. Reject H0 for α = 0.01 D. Unable to reject H0 for α < 0.05
Assuming that, in testing H0: μ =20 vs. H1 μ ≠20, you decide on the critical...
Assuming that, in testing H0: μ =20 vs. H1 μ ≠20, you decide on the critical region X bar ≤ 15 and X bar ≥ 25. Assume X is normally distributed, σ 2 = 25, and the following four random values are observed: 9, 20, 15, 11. a) Would you accept or reject H 0 ? b) What level of α is assumed here? c) What probability value would you report? d) What would be the appropriate critical region for...
9. In a test of hypotheses of the form ?0 : μ = 78.3 versus H1...
9. In a test of hypotheses of the form ?0 : μ = 78.3 versus H1 : μ ≠78.3 using ? = .01, when the sample size is 28 and the population is normal but with unknown standard deviation the rejection region will be the interval or union of intervals: (a) [2.771, ∞) (b) [2.473, ∞) (c) [2.576, ∞) (d) (−∞,−2.771] ∪ [2.771, ∞) (e) (−∞,−2.473] ∪ [2.473, ∞) 10. In a test of hypotheses ?0: μ = 2380 versus...
For the following hypothesis test, where H0: μ ≤ 10; vs. HA: μ > 10, we...
For the following hypothesis test, where H0: μ ≤ 10; vs. HA: μ > 10, we reject H0 at level of significance α and conclude that the true mean is greater than 10, when the true mean is really 14. Based on this information, we can state that we have: Made a Type I error. Made a Type II error. Made a correct decision. Increased the power of the test.
Suppose you have the following null and alternative hypotheses: H0: μ = 81 and H1: μ...
Suppose you have the following null and alternative hypotheses: H0: μ = 81 and H1: μ ≠ 81. You collect a sample of data from a population that is normally distributed . The sample size is 19, the sample mean is 84.9, and the population standard deviation is 5.7. What is your p-value and conclusion? Test at a level of significance of 0.01. A. 0.0080, Do Not Reject B. 0.0029, Reject C. 0.0029, Do Not Reject D. 0.0064, Reject E....