Question

Test Ho: µ =100; H1: µ < 100, using n = 36 and alpha = .05...

Test Ho: µ =100; H1: µ < 100, using n = 36 and alpha = .05 If the sample mean=106 and the sample standard deviation = 15, which of the following is true?

  • A. test statistic = 2.4; the critical value = -1.69; we fail to reject Ho.

  • B. test statistic = 1.96; the critical value = -1.69; we fail to reject Ho.

  • C. test statistic = 2.40; the critical value = -1.69; we reject Ho.

  • D. test statistic = 2.40; the critical value = 1.69; we reject Ho

Homework Answers

Answer #1

the correct option be:-

A. test statistic = 2.4; the critical value = -1.69; we fail to reject Ho.

[explanation:-

hypothesis:-

given data are:-

sample mean () = 106

sample sd (s)=15

sample size (n) =36

level of significance () = 0.05

here we will do 1 sample t test for mean.

test statistic be:-

degrees of freedom = (n-1)=(36-1)=35

t critical value for 95% confidence level = -1.69

[ using t distribution table for df = 35,alpha=0.05, left tailed test ]

rejection region:-

reject the null hypothesis if,

decision:-

so, we fail to reject the null hypothesis. ]

***in case of doubt, comment below. And if u liked the solution, please like.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a hypothesis test with hypotheses Ho: μ ≥ 80 and H1: μ < 80 and...
In a hypothesis test with hypotheses Ho: μ ≥ 80 and H1: μ < 80 and , a random sample of 105 elements selected from the population produced a mean of 74.6. Assume that σ= 23.3, and that the test is to be made at the 5% significance level. -What is the critical value of z? -1.96, 1.645, 1.96 or -1.645 -What is the value of the test statistic, z, rounded to three decimal places? -What is the p-value for...
In order to test HO: µ0 = 40 versus H1: µ ≠ 40, a random sample...
In order to test HO: µ0 = 40 versus H1: µ ≠ 40, a random sample of size n = 25 is obtained from a normal population with a known σ = 6. My x-BAR mean is 42.3 from my sample. Using a TI 83/84 calculator, calculate my P-value with the appropriate Hypothesis Test.                                   Use a critical level α = 0.10 and decide to Accept or Reject HO with the valid reason for the decision. Group of answer choices My...
1. Consider the following hypothesis test: Ho : μ = 15 H1 : μ ≠ 15...
1. Consider the following hypothesis test: Ho : μ = 15 H1 : μ ≠ 15 A sample of 50 provided a sample mean of 15.15. The population standard deviation is 3. a. Compute the value of the test statistic. b. What is the p value? c. At α = 0.05, what is the rejection rule using the critical value? What is your conclusion? 2. Consider the following hypothesis test: Ho: μ ≤ 51 H1: μ > 51 A sample...
A random sample is selected from a normal population with a mean of µ = 30...
A random sample is selected from a normal population with a mean of µ = 30 and a standard deviation of σ= 8. After a treatment is administered to the individuals in the sample, the sample mean is found to be x̅ =33. Furthermore, if the sample consists of n = 64 scores, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α = .05. 4a. Which of the following...
A normal population has a mean of µ = 100. A sample of n = 36...
A normal population has a mean of µ = 100. A sample of n = 36 is selected from the population, and a treatment is administered to the sample. After treatment, the sample mean is computed to be M = 106. Assuming that the population standard deviation is σ = 12, use the data to test whether or not the treatment has a significant effect. Use a one tailed test. Hypothesis:                                        Zcrit = z test calculation:                                                                  Conclusion:
A hypothesis test is to be performed with a Null hypothesis Ho: µ ≥ 15 and...
A hypothesis test is to be performed with a Null hypothesis Ho: µ ≥ 15 and an alternative hypothesis H1: µ < 15,  the population standard deviation is σ=2.0, the sample size is; n=50, and the significance level is α=0.025. 1- What is type l error? 2- What is the chance of making a type I error in the above test? 3- What is a Type II error? 4- What value would the sample mean have to be less than to...
x = 24.4, s = 9.2, n = 25, Ho: µ = 26, Ha: µ <...
x = 24.4, s = 9.2, n = 25, Ho: µ = 26, Ha: µ < 26, a = 0.05 13) A) Test statistic: t = -0.87. P- value = 0.8034. Do not reject Ho. There is not sufficient evidence to conclude that the mean is less than 26. The evidence against the null hypothesis is weak or none. B) Test statistic: t = -0.87. P- value = 0.1966. Do not reject Ho. There is not sufficient evidence to conclude...
Suppose that we wish to test H0: µ = 20 versus H1: µ ≠ 20, where...
Suppose that we wish to test H0: µ = 20 versus H1: µ ≠ 20, where σ is known to equal 7. Also, suppose that a sample of n = 49 measurements randomly selected from the population has a mean of 18. Calculate the value of the test statistic Z. By comparing Z with a critical value, test H0 versus H1 at α = 0.05. Calculate the p-value for testing H0 versus H1. Use the p-value to test H0 versus...
Some researchers claim that herbal supplements improve human memory. To test this claim, a researcher selects...
Some researchers claim that herbal supplements improve human memory. To test this claim, a researcher selects a sample of n = 25 college students. Each student is given herbal supplements daily for 6 weeks and then all the participants are given a standardized memory test. For the population, scores on the tests are normally distributed with µ = 70 and σ= 15. The sample of n = 25 students had a mean score of M = 75. Can we conclude...
Assume that the population variance is unknown. We test the hypothesis that Ho: µ=5 against the...
Assume that the population variance is unknown. We test the hypothesis that Ho: µ=5 against the one-sided alternative H1: µ≠5 at a level of significance of 5% and with a sample size of n=30. We calculate a test statistic = -1.699. The p-value of this hypothesis test is approximately ? %. Write your answer in percent form. In other words, write 5% as 5.0.