Question

8 Roll a fair (standard) die until a 6 is obtained and let Y be the...

8 Roll a fair (standard) die until a 6 is obtained and let Y be the total number of rolls until a 6 is obtained. Also, let X the number of 1s obtained before a 6 is rolled.

(a) Find E(Y).

(b) Argue that E(X | Y = y) = 1/5 (y − 1). [Hint: The word “Binomial” should be in your answer.]

(c) Find E(X).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
I roll a fair die until I get my first ace. Let X be the number...
I roll a fair die until I get my first ace. Let X be the number of rolls I need. You roll a fair die until you get your first ace. Let Y be the number of rolls you need. (a) Find P( X+Y = 8) HINT: Suppose you and I roll the same die, with me going first. In how many ways can it happen that X+Y = 8, and what is the probability of each of those ways?...
A fair die is rolled until the number 6 first appears. Let N be the number...
A fair die is rolled until the number 6 first appears. Let N be the number of rolls, including the last roll. Given that we have rolled at least 4 times, what is the expected number of rolls? This one's killing me
roll a fair die repeatedly. a) Let X denote the number of rolls until you get...
roll a fair die repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
A die is rolled six times. (a) Let X be the number the die obtained on...
A die is rolled six times. (a) Let X be the number the die obtained on the first roll. Find the mean and variance of X. (b) Let Y be the sum of the numbers obtained from the six rolls. Find the mean and the variance of Y
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you...
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
A fair die is successively rolled. Let X and Y denote, respectively, the number of rolls...
A fair die is successively rolled. Let X and Y denote, respectively, the number of rolls necessary to obtain a 5 and a 4. Find (a) E X, (b) E[X|Y = 1] and (c) E[X|Y = 4].
A fair die is successively rolled. Let X and Y denote, respectively, the number of rolls...
A fair die is successively rolled. Let X and Y denote, respectively, the number of rolls necessary to obtain a 5 and a 4. Find (a) EX, (b) E[X|Y =1] and (c) E[X|Y=4].
You roll a pair of fair dice repeatedly. Let X denote the number of rolls until...
You roll a pair of fair dice repeatedly. Let X denote the number of rolls until you get two consecutive sums of 8(roll two 8 in a row). Find E[X]
A 6-sided die rolled twice. Let E be the event "the first roll is a 1"...
A 6-sided die rolled twice. Let E be the event "the first roll is a 1" and F the event "the second roll is a 1". Find the probability of showing a 1 on both rolls. Write your answer as a reduced fraction.
Roll a die twice and let Y be the sum of the two rolls. Find the...
Roll a die twice and let Y be the sum of the two rolls. Find the joint pmf of (X, Y ) if X is (a) the number on the first roll (b) the smallest number