Question

Math & Music (Raw Data, Software Required): There is a lot of interest in the relationship...

Math & Music (Raw Data, Software Required):
There is a lot of interest in the relationship between studying music and studying math. We will look at some sample data that investigates this relationship. Below are the Math SAT scores from 8 students who studied music through high school and 11 students who did not. Test the claim that students who study music in high school have a higher average Math SAT score than those who do not. Test this claim at the 0.05 significance level.

Studied Music No Music
count Math SAT Scores (x1) Math SAT Scores (x2)
1 531 480
2 581 535
3 589 553
4 573 537
5 516 480
6 564 513
7 536 495
8 597 556
9 554
10 493
11 557

You should be able copy and paste the data directly into your software program.

(a) The claim is that the difference in population means is positive (μ1μ2 > 0). What type of test is this?

This is a left-tailed test.

This is a right-tailed test.  

  This is a two-tailed test.


(b) Use software to calculate the test statistic. Do not 'pool' the variance. This means you do not assume equal variances.
Round your answer to 2 decimal places.

t =



(c) Use software to get the P-value of the test statistic. Round to 4 decimal places.
P-value =

(d) What is the conclusion regarding the null hypothesis?

reject H0

fail to reject H0    


(e) Choose the appropriate concluding statement.

The data supports the claim that students who study music in high school have a higher average Math SAT score than those who do not.

There is not enough data to support the claim that students who study music in high school have a higher average Math SAT score than those who do not.    

We reject the claim that students who study music in high school have a higher average Math SAT score than those who do not.

We have proven that students who study music in high school have a higher average Math SAT score than those who do not.

Homework Answers

Answer #1


The statistic software output for this problem is:

(a)

This is a right-tailed test.  

(b)

t = 2.67

(c)

P-value = 0.0084

(d)

reject H0

(e)

The data supports the claim that students who study music in high school have a higher average Math SAT score than those who do not.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Math & Music (Raw Data, Software Required): There is a lot of interest in the relationship...
Math & Music (Raw Data, Software Required): There is a lot of interest in the relationship between studying music and studying math. We will look at some sample data that investigates this relationship. Below are the Math SAT scores from 8 students who studied music through high school and 11 students who did not. Test the claim that students who study music in high school have a higher average Math SAT score than those who do not. Test this claim...
Retaking the SAT (Raw Data, Software Required): Many high school students take the SAT's twice; once...
Retaking the SAT (Raw Data, Software Required): Many high school students take the SAT's twice; once in their Junior year and once in their Senior year. The Senior year scores (x) and associated Junior year scores (y) are given in the table below. This came from a random sample of 35 students. Use this data to test the claim that retaking the SAT increases the score on average by more than 27 points. Test this claim at the 0.10 significance...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 515. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 508, with a standard deviation of 35. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 40 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.01 significance level. (a) What type of test is this? This is a left-tailed test. This is a right-tailed test.    ...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 50 graduates from Stevens High, the mean SAT score in math was 495, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.05 significance level. (a) What type of test is this? This is a two-tailed test. This is a left-tailed test.    ...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample...
Math SAT: Suppose the national mean SAT score in mathematics was 505. In a random sample of 60 graduates from Stevens High, the mean SAT score in math was 510, with a standard deviation of 30. Test the claim that the mean SAT score for Stevens High graduates is the same as the national average. Test this claim at the 0.10 significance level. (a) What type of test is this? This is a left-tailed test.This is a two-tailed test.     This is...
. A certain test preparation course is designed to improve students' SAT Math scores. The students...
. A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 504 with a standard deviation of 38.5, while the students who did not take the prep course have a mean SAT Math score of 492 with a standard deviation of 43.5. The SAT Math scores are taken for a sample of 78 students who took the prep course and a sample of...
A certain test preparation course is designed to improve students' SAT Math scores. The students who...
A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 504 with a standard deviation of 38.5, while the students who did not take the prep course have a mean SAT Math score of 492 with a standard deviation of 43.5. The SAT Math scores are taken for a sample of 78 students who took the prep course and a sample of 85...
In a study of Math SAT scores done in 2010, the investigators computed the average Math...
In a study of Math SAT scores done in 2010, the investigators computed the average Math SAT score ( Ai )in each of the 50 states and D.C. and the percentage ( Pi ) of high school seniors in each state that took the test that year. They found that the correlation between the variables A and P was r = -0.77. (a) Does this mean that the test scores were better on average in states where fewer a lower...
In a study of Math SAT scores done in 2010, the investigators computed the average Math...
In a study of Math SAT scores done in 2010, the investigators computed the average Math SAT score ( Ai )in each of the 50 states and D.C. and the percentage ( Pi )of high school seniors in each state that took the test that year. They found that the correlation between the variables A and P was r = -0.77. (a) Does this mean that the test scores were better on average in states where fewer a lower percentage...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT