Question

SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error...

SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error 0.428710255 Observations 115 ANOVA df SS MS F Significance F Regression 4 4.878479035 1.219619759 6.635852231 8.02761E-05 Residual 110 20.21717314 0.183792483 Total 114 25.09565217 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.321875686 0.323939655 0.99362854 0.322584465 -0.320096675 0.963848047 -0.320096675 0.963848047 Gender -0.307211858 0.082630734 -3.717888514 0.000317832 -0.470966578 -0.143457137 -0.470966578 -0.143457137 Age 0.000724105 0.091134233 0.007945479 0.993674883 -0.179882553 0.181330763 -0.179882553 0.181330763 GPA 0.171984622 0.05279787 3.257415886 0.001495536 0.067351635 0.276617608 0.067351635 0.276617608 Total Q 0.000260423 0.003407326 0.076430415 0.939215512 -0.006492097 0.007012944 -0.006492097 0.007012944

The data set is a study of student persistent enrolling in the next semester based on Gender, Age, GPA, a 22 questionnaire on self-efficacy, and student enrollment status.The educational researcher wants to study the relationship between student enrollment status as it relates to gender, age, GPA, and the total response to a 22 questionnaire survey. 2. The estimated multiple regression analysis equation. 3. Does the model work? 4. How well does the model work? 5. Which variables contribute to the model? 6. General interpretation of the data and the data analysis

Homework Answers

Answer #1

2) the estimated multiple regression model is, y=0.322-0.307gender+0.000724age+0.172GPA+0.000260423total q

3) there is a linear relation between the regressors to explain the response variable, the model may work.

4) the model won't work well, as the r sq and adjusted r sq is very small, i.e. the total variability of the respornse variable is only 44.09% explained by the explanatory variables.

5) from p values of the independent variable we can say that, gender and GPA are the variables that contributes to the model

6) there exists regressors which are insignificant, so the model is not good. It won't be a good predictive model as r sq is very small

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error 7.177298036 Observations 156 ANOVA df SS MS F Significance F Regression 1 38112.05194 38112.05194 739.8443652 1.09619E-60 Residual 154 7933.095493 51.5136071 Total 155 46045.14744 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 8.67422449 2.447697434 3.543830365 0.000522385 3.838827439 13.50962154 3.838827439 13.50962154 X Variable 1 0.801382837 0.029462517 27.20008024 1.09619E-60 0.743179986 0.859585688 0.743179986 0.859585688 (d) How much of the variation in...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error 5272.980333 Observations 50 ANOVA df SS MS F Significance F Regression 1 75893113.09 75893113.09 2.729543781 0.105035125 Residual 48 1334607437 27804321.59 Total 49 1410500550 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept 6396.894057 3281.342486 1.949474669 0.057094351 -200.6871963 12994.47531 -2404.335972 15198.12409 HSRANK 64.68225855 39.15075519 1.6521331 0.105035125 -14.03561063 143.4001277 -40.32805468 169.6925718 a. According to your estimate, what is the predicted...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error 1816.52 Observations 27 ANOVA df SS MS F Significance F Regression 6 2.06E+08 34376848 10.41804 2.81E-05 Residual 20 65994862 3299743 Total 26 2.72E+08 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -4695.4 12622.97 -0.37197 0.713825 -31026.5 21635.66 -31026.5 21635.66 AGE 161.7028 126.5655 1.277621 0.216015 -102.308 425.7137 -102.308 425.7137 MILAGE -0.03441 0.023186 -1.4842 0.153346 -0.08278 0.013953 -0.08278 0.013953...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error 514.2440271 Observations 471 ANOVA df SS MS F Significance F Regression 3 9723795745 3241265248 12256.7707 0 Residual 467 123496711.4 264446.9194 Total 470 9847292456 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -267.1127974 42.01832073 -6.357055513 4.8988E-10 -349.68118 -184.54441 -349.68118 -184.54441 Fuel cost (000,000) 0.449917223 0.098292092 4.577349137 6.0451E-06 0.25676768 0.64306676 0.25676768 0.64306676 Salary (000,000) -0.327915884 0.188252958 -1.741889678 0.08218614 -0.6978436...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error 25.32612538 Observations 12 ANOVA df SS MS F Significance F Regression 5 13854.44091 2770.888181 4.319977601 0.051673038 Residual 6 3848.475761 641.4126268 Total 11 17702.91667 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -53.17436031 42.95203957 -1.237993838 0.261960445 -158.274215 51.92549434 -158.274215 51.92549434 Advertising ($1000s) 2.050813091 0.763960482 2.684449181 0.036320193 0.181469133 3.92015705 0.181469133 3.92015705 t (quarters) -4.047065728 2.779316427 -1.456137088 0.19560701 -10.84780803 2.753676575...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error 14.7134321 Observations 20 ANOVA df SS MS F Significance F Regression 1 23394.2185 23394.2185 108.063881 4.9013E-09 Residual 18 3896.73153 216.485085 Total 19 27290.95 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -260.93886 39.3752125 -6.626983 3.2026E-06 -343.66312 -178.21461 -343.66312 -178.21461 Height 5.92431175 0.56989864 10.3953779 4.9013E-09 4.72699913 7.12162438 4.72699913 7.12162438 RESIDUAL OUTPUT Observation Predicted Weight Residuals 1 106.368464 8.63153552...
SUMMARY OUTPUT Regression Statistics Multiple R 0.881644384 R Square 0.77729682 Adjusted R Square 0.767919844 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.881644384 R Square 0.77729682 Adjusted R Square 0.767919844 Standard Error 2.046234994 Observations 100 ANOVA df SS MS F Significance F Regression 4 1388.337623 347.0844058 82.89418891 3.94359E-30 Residual 95 397.7723769 4.187077651 Total 99 1786.11 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 30.46621607 3.539611332 8.607220742 1.55786E-13 23.43919912 37.49323302 23.43919912 37.49323302 Engine size -0.026439837 0.008914999 -2.965769936 0.003818268 -0.044138349 -0.008741326 -0.044138349 -0.008741326 Compression Ratio 0.364901894 0.056081385 6.506649162 3.58903E-09 0.253566269 0.476237519...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations 21 ANOVA df SS MS F Significance F Regression 2 27.20518 13.60259 9.186487 0.00178 Residual 18 26.65291 1.480717 Total 20 53.8581 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 58.74307 12.66908 4.636728 0.000205 32.12632 85.35982 32.12632 85.35982 High School Grad -0.00133 0.000311 -4.28236 0.000448 -0.00198 -0.00068 -0.00198 -0.00068 Bachelor's -0.00016 5.46E-05 -3.00144 0.007661 -0.00028 -4.9E-05 -0.00028 -4.9E-05...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 12.4926 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept 38.7857 Cylinders -2.7500 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 4.0000 1.9507 6.0000 1.1763 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT