Question

4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths +...

4.-Interpret the following regression model
Call:
lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths + 
    dis_coast + API.2011 + dis_fwy + dis_down + Pool, data = Training)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.17695 -0.23519 -0.00112  0.26471  1.02810 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  9.630e+00  2.017e-01  47.756  < 2e-16 ***
Lot.Size    -2.107e-06  3.161e-07  -6.666 4.78e-11 ***
Square.Feet  2.026e-04  3.021e-05   6.705 3.71e-11 ***
Num.Baths    6.406e-02  2.629e-02   2.437 0.015031 *  
dis_coast   -1.827e-05  6.881e-06  -2.655 0.008077 ** 
API.2011     3.459e-03  2.356e-04  14.680  < 2e-16 ***
dis_fwy      3.826e-06  8.140e-06   0.470 0.638452    
dis_down     1.176e-05  7.629e-06   1.541 0.123607    
Pool         2.046e-01  5.473e-02   3.738 0.000198 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3851 on 833 degrees of freedom
Multiple R-squared:  0.4808,    Adjusted R-squared:  0.4758 
F-statistic: 96.41 on 8 and 833 DF,  p-value: < 2.2e-16

Homework Answers

Answer #1

From the given regression output above,

We want to test the hypothesis,

H0: The model is insignificant ( Null Hypothesis)

H1: The model is significant (Alternative Hypothesis)

Here , F=96.41

P value=0.0000000022

Here, P value is less than 0.05. We reject the null hypothesis at 5% level of significance

There is sufficient evidence to support the claim that the model is significant.

*** The independent variables like lot size, square feet, num bath , dis coast, API 2011, pool are significant because p value is less than 0.05.

*** Other variables are insignificant.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf + HML + SMB + SMB2) Residuals:      Min       1Q   Median       3Q      Max -10.1560 -0.6880 -0.0254 0.6660 21.9700 Coefficients:             Estimate Std. Error t value Pr(>|t|)    (Intercept) -0.01163    0.02800 -0.415    0.678    Mktrf        1.25614    0.02389 53.540 <2e-16 *** HML          2.01719    0.04238 47.602   <2e-16 *** SMB         -0.05150    0.04769 -1.080    0.280    SMB2         0.03180    0.03545   0.897    0.372 --- Signif. codes: 0 ‘***’ 0.001...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy)...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy) Residuals:     Min      1Q Median      3Q     Max -258.24 -105.23   23.29 116.06 174.73 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) -240.8429    36.6769 -6.567 1.46e-10 *** launch_speed    4.8800     0.4022 12.134 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 122.4 on 438 degrees of freedom Multiple R-squared: 0.2516, Adjusted R-squared: 0.2499 F-statistic:...
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:         &nbs
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 1.311e+02 2.219e+02   0.591   0.5550    debt         1.283e-01 3.288e-01   0.390   0.6966    sales        2.942e-01 1.366e-01   2.154   0.0321 * income       1.546e+01 2.697e+00   5.730 2.42e-08 *** assets      -2.390e-05 4.839e-03 -0.005   0.9961    seo          2.973e+02 2.627e+02   1.132   0.2587    --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2019 on 303 degrees of freedom Multiple R-squared: 0.258,   Adjusted...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the summary output for this simple linear regression model. > Model2 <- lm(LifeExpect2017~ AverageDailyPM2.5) > summary(Model2) Call: lm(formula = LifeExpect2017 ~ AverageDailyPM2.5) Residuals: Min 1Q Median 3Q Max -17.1094 -1.7516 0.0592 1.7208 18.4604 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 81.6278 0.2479 329.23 <2e-16 *** AverageDailyPM2.5 -0.4615 0.0267 -17.29 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data = Lab5, na.action = na.exclude) Residuals: Min 1Q Median 3Q Max -582.66 -274.75 13.53 273.92 589.06 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 385.362 77.360 4.981 8.72e-07 *** fin_loss 3.248 1.523 2.133 0.0334 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 316.6 on 498 degrees of freedom Multiple R-squared: 0.009052,   Adjusted R-squared:...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and domestic vs foreign manufacturer to predict mileage: ------------------------------------------------------------------------------------------------------ > summary(lm(highwaympg~displacement+hp+weight+domestic)) Call: lm(formula = highwaympg ~ displacement + hp + weight + domestic) Residuals:     Min      1Q  Median      3Q     Max -6.9530 -1.6997 -0.1708 1.6452 11.4028 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 53.849794   2.090657 25.757 < 2e-16 *** displacement 1.460873   0.748837   1.951   0.0543 . hp           -0.009802   0.011356 -0.863   0.3904    weight       -0.008700   0.001094 -7.951 6.23e-12 *** domestic     -0.939918   0.762175 -1.233   0.2208    ---...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of dollars along with the sales. The experiment has been repeated 200 times with different budgets and the observed sales have been recorded. The simple linear regression model was fitted: ## ## Call: ## lm(formula = sales ~ youtube, data = marketing) ## ## Residuals: ## Min 1Q Median 3Q Max ## -10.06 -2.35 -0.23 2.48 8.65 ## ## Coefficients: ## Estimate Std. Error t...
Below is the R output of a study of ACT scores for the first year of...
Below is the R output of a study of ACT scores for the first year of college students. This helps to see if the test scores can predict a GPA. Simply put, this ACT helps to be an explanatory var and GPA would be a response var. Call: Im(formula = GPA ~ ACT, data = gpadata) Residuals: Min 1Q Median 3Q Max -2.74004 -0.33827 0.04062 0.44064 1.22737 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.11405 .32089 6.588 1.3e-09 ***...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT