4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths + dis_coast + API.2011 + dis_fwy + dis_down + Pool, data = Training) Residuals: Min 1Q Median 3Q Max -2.17695 -0.23519 -0.00112 0.26471 1.02810 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.630e+00 2.017e-01 47.756 < 2e-16 *** Lot.Size -2.107e-06 3.161e-07 -6.666 4.78e-11 *** Square.Feet 2.026e-04 3.021e-05 6.705 3.71e-11 *** Num.Baths 6.406e-02 2.629e-02 2.437 0.015031 * dis_coast -1.827e-05 6.881e-06 -2.655 0.008077 ** API.2011 3.459e-03 2.356e-04 14.680 < 2e-16 *** dis_fwy 3.826e-06 8.140e-06 0.470 0.638452 dis_down 1.176e-05 7.629e-06 1.541 0.123607 Pool 2.046e-01 5.473e-02 3.738 0.000198 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.3851 on 833 degrees of freedom Multiple R-squared: 0.4808, Adjusted R-squared: 0.4758 F-statistic: 96.41 on 8 and 833 DF, p-value: < 2.2e-16
From the given regression output above,
We want to test the hypothesis,
H0: The model is insignificant ( Null Hypothesis)
H1: The model is significant (Alternative Hypothesis)
Here , F=96.41
P value=0.0000000022
Here, P value is less than 0.05. We reject the null hypothesis at 5% level of significance
There is sufficient evidence to support the claim that the model is significant.
*** The independent variables like lot size, square feet, num bath , dis coast, API 2011, pool are significant because p value is less than 0.05.
*** Other variables are insignificant.
Get Answers For Free
Most questions answered within 1 hours.