Question

Suppose the random variable X has pdf f(x;?, ?)=??x?−1e−?x? for x≥0;?, ? > 0. a) Find...

Suppose the random variable X has pdf f(x;?, ?)=??x?−1e−?x? for x≥0;?, ? > 0.

a) Find the maximum likelihood estimator for ?, assuming that ? is known.

b) Suppose ? and ? are both unknown. Write down the equations that would be solved simultaneously to find the maximum likelihood estimators of ? and ?.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random variable X has the following pdf f(x)=2x^-3, if x ≥1 0, Otherwise (a) Find...
A random variable X has the following pdf f(x)=2x^-3, if x ≥1 0, Otherwise (a) Find the cdf of X (b) Give a formula for the pth quantile of X and use it to find the median of X. (c) Find the mean and variance of X
Suppose that X is a random variable with pdf f(x) = cxe^(-x) for 0<x<1 and 0...
Suppose that X is a random variable with pdf f(x) = cxe^(-x) for 0<x<1 and 0 elsewhere. a. find the value of c b. find the expectation of x c. find the variance of x
Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random...
Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random sample X1, X2,...,Xn from it. (a)What is the Cramer-Rao Lower Bound on the variance of any unbiased estimator of the parameter m? (b) What is the maximum likelihood estimator ofm?(c) Does the variance of the MLE achieve the CRLB for all n?
Suppose X is a random variable with pdf f(x)= {c(1-x) 0<x<1 {0 otherwise where c >...
Suppose X is a random variable with pdf f(x)= {c(1-x) 0<x<1 {0 otherwise where c > 0. (a) Find c. (b) Find the cdf F (). (c) Find the 50th percentile (the median) for the distribution. (d) Find the general formula for F^-1 (p), the 100pth percentile of the distribution when 0 < p < 1.
Suppose the pdf of a random variable X is defined as: f(x) = (x/16) + (1/4)...
Suppose the pdf of a random variable X is defined as: f(x) = (x/16) + (1/4) for -4 < x <= 0, and f(x) = -((x^2)/36) + (1/4) Find the cdf of X.
Consider the random variable X with density given by f(x) = θ 2xe−θx x > 0,...
Consider the random variable X with density given by f(x) = θ 2xe−θx x > 0, θ > 0 a) Derive the expression for E(X). b) Find the method of moment estimator for θ. c) Find the maximum likelihood estimator for θ based on a random sample of size n. Does this estimator differ from that found in part (b)? d) Estimate θ based on the following data: 0.1, 0.3, 0.5, 0.2, 0.3, 0.4, 0.4, 0.3, 0.3, 0.3
A random variable X has pdf as follows: ?(?) = ?? + .2 0 < ?...
A random variable X has pdf as follows: ?(?) = ?? + .2 0 < ? <5. PAY ATTENTION TO > and < signs! a. Find constant c so that f(x) becomes legitimate pdf. b. What is the mean of X? c. What is the 60th percentile of X?
Suppose that X is an exponential random variable with pdf f(x) = e^(-x),0<x<∞, and zero otherwise....
Suppose that X is an exponential random variable with pdf f(x) = e^(-x),0<x<∞, and zero otherwise. a. compute the exact probability that X takes on a value more than two standard deviations away from its mean. b. use chebychev's inequality to find a bound on this probability
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b)...
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b) Find the mean of X. c) Find the variance of X. d) Find F (1.4). e) Find P(12<X<1). f) Find PX>3.
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that...
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that if f(x) > 0 only on a single (possibly infinite) interval of the real numbers then F(x) is a strictly increasing function of x over that interval. [Hint: Try proof by contradiction]. (b) Under the conditions described in part (a), find and identify the distribution of Y = F(x).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT