Question

Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y....

Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y. What will be the distribution of Z?

Hint: Use moment generating function.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having...
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having a probability distribution that puts a mass of 1/4 on the number 0, a mass of 1/4 at 1, and a mass of 1/2 at 2. a. Compute the moment generating function for S= X+Y+Z b. Use the MGF from part a to compute the second moment of S, E(S^2) c. Compute the second moment of S in a completely different way, by expanding...
If X and Y are independent Binomial random variables, both with parameters n and p, calculate...
If X and Y are independent Binomial random variables, both with parameters n and p, calculate the conditional distribution of X given that X + Y = m. Can you recognize the distribution?
Show that if two binomial random variables X ∼ Bin(a,p) and Y ∼ Bin(b,p) are independent,...
Show that if two binomial random variables X ∼ Bin(a,p) and Y ∼ Bin(b,p) are independent, then X + Y ∼ Bin(a + b, p), using the technique of moment generating function.
Let X and Y be independent random variables following Poisson distributions, each with parameter λ =...
Let X and Y be independent random variables following Poisson distributions, each with parameter λ = 1. Show that the distribution of Z = X + Y is Poisson with parameter λ = 2. using convolution formula
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent...
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent random variable following an identical distribution f(x):=e^(-x) if x>0, calculate the moment generating function of 2X+3Y b) If X follows a bernoulli(0.5), and Y follows a Binomial(3,0.5), and if X and Y are independent, calculate the probability P(X+Y=3) and P(X=0|X+Y=3)
Let ? and ? be two independent random variables with moment generating functions ?x(?) = ?t^2+2t...
Let ? and ? be two independent random variables with moment generating functions ?x(?) = ?t^2+2t and ?Y(?)=?3t^2+t . Determine the moment generating function of ? = ? + 2?. If possible, state the distribution name (and include parameter values) of the distribution of ?.
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a)....
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a). Find the cdf and density of Z = X/Y . b). Compute P(X < Y ). c). Find the cdf and density of W = min{X,Y }.
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Derive the joint probability distribution function for X and Y. Make sure to explain your steps.
Let X ∼ Poisson(µ1) and Y ∼ Poisson(µ2) be two independent random variables. Define Z =...
Let X ∼ Poisson(µ1) and Y ∼ Poisson(µ2) be two independent random variables. Define Z = X +Y . Show that X | Z = n ∼ Binomial( n, µ1 / (µ1 + µ2))
Let two independent random vectors x and z have Gaussian distributions: p(x) = N(x|µx,Σx), and p(z)...
Let two independent random vectors x and z have Gaussian distributions: p(x) = N(x|µx,Σx), and p(z) = N(z|µz,Σz). Now consider y = x + z. Use the results for Gaussian linear system to find the distribution p(y) for y. Hint. Consider p(x) and p(y|x). Please prove for it rather than directly giving the result.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT